CSci 427\W
Development of Secure Software Systems
Day 21: Software Engineering and Security

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

©) What's the type of the return value of getchar?
) Why?

Outline

Software engineering for security

Defensive programming

©) Analogy to defensive driving: drive so that there
won't be a crash even if other drivers are negligent

£) Don't just avoid bugs, reduce risks

£) Aim for security even if other code and
programmers are imperfect

Modularity

©) Divide software into pieces with well-defined
functionality
) Isolate security-critical code

® Minimize TCB, facilitate privilege separation
® Improve auditability

Minimize interfaces

©) Hallmark of good modularity: clean interface

£ Particularly difficult;

® Safely implementing an interface for malicious users
® Safely using an interface with a malicious implementation

Appropriate paranoia

©) Many security problems come down to missing
checks

£) But, it isn't possible to check everything continuously
©) How do you know when to check what?

Invariant

©) A fact about the state of a program that should
always be maintained

£) Assumed in one place to guarantee in another
£) Compare: proof by induction




Pre- and postconditions

©) Invariants before and after execution of a function
©) Precondition: should be true before call
) Postcondition: should be true after return

Dividing responsibility

£) Program must ensure nothing unsafe happens

£) Pre- and postconditions help divide that
responsibility without gaps

When to check

£) At least once before any unsafe operation
©) If the check is fast
o) If you know what to do when the check fails

o If you don't trust
® your caller to obey a precondition
® your callee to satisfy a postcondition
® yourself to maintain an invariant

Sometimes you can't check

£) Check that p points to a null-terminated string
) Check that £p is a valid function pointer
£) Check that x was not chosen by an attacker

Error handling

) Every error must be handled
® e, program must take an appropriate response action
©) Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

£) Commonly, return value indicates error if any
£) Bad: may overlap with regular result
£) Bad: goes away if ignored

Exceptions

©) Separate from data, triggers jump to handler

£) Good: avoid need for manual copying, not dropped
©) May support: automatic cleanup (finally)

©) Bad: non-local control flow can be surprising

Outline

Fuzz testing




Testing and security

£) “Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
» Buffer overflows: long strings

® Integer overflows: large numbers
® Format string vulnerabilities: %x

Random or fuzz testing

©) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
£) Even this was surprisingly effective

Mutational fuzzing

©) Instead of totally random inputs, make small random
changes to normal inputs

©) Changes are called mutations
£) Benign starting inputs are called seeds

) Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

£) Observation: it helps to know what correct inputs
look like

£) Grammar specifies legal patterns, run backwards
with random choices to generate

£) Generated inputs can again be basis for mutation

£) Most commonly used for standard input formats
® Network protocols, JavaScript, etc.

What if you don't have a grammar?

o) Input format may be unknown, or buggy and limited
£) Writing a grammar may be too much manual work

©) Can the structure or interesting inputs be figured out
automatically?

Coverage-driven fuzzing

£ Instrument code to record what code is executed

£) An input is interesting if it executes code that was
not executed before

£) Only interesting inputs are used as basis for future
mutation

AFL

©) Best known open-source tool, pioneered
coverage-driven fuzzing

©) American Fuzzy Lop, a breed of rabbits

) Stores coverage information in a compact hash table
) Compiler-based or binary-level instrumentation

©) Has a number of other optimizations

Outline

Saltzer & Schroeder’s principles




A classic paper

Jerome H. Saltzer and Michael D. Schroeder, "The
Protection of Information in Computer Systems.” In
Proceedings of the IEEE, Sept. 1975. (853 citations per
IEEE)

Economy of mechanism

£) Security mechanisms should be as simple as
possible

£) Good for all software, but security software needs
special scrutiny

Fail-safe defaults

©) When in doubt, don't give permission

£) Whitelist, don't blacklist

£) Obvious reason: if you must fail, fail safe
£) More subtle reason: incentives

Complete mediation

£) Every mode of access must be checked

® Not just regular accesses: startup, maintenance, etc.
£) Checks cannot be bypassed

® Eg, web app must validate on server, not just client

Open design

©) Security must not depend on the design being
secret
o If anything is secret, a minimal key
® Design is hard to keep secret anyway

® Key must be easily changeable if revealed
® Design cannot be easily changed

Open design: strong version

£) "The design should not be secret”

o) If the design is fixed, keeping it secret can't help
attackers

£) But an unscrutinized design is less likely to be
secure

Separation of privilege

£) Real world: two-person principle
©) Direct implementation: separation of duty

©) Multiple mechanisms can help if they are both
required
® Password and wheel group in Unix

Least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root




Least privilege: privilege separation

©) Programs must also be divisible to avoid excess
privilege

©) Classic example: multi-process OpenSSH server

©) NB. Separation of privilege = privilege separation

Least common mechanism

£) Minimize the code that all users must depend on for
security

£) Related term: minimize the Trusted Computing Base
(TCB)
©) Eg. prefer library to system call; microkernel OS

Psychological acceptability

©) A system must be easy to use, if users are to apply
it correctly

£) Make the system’s model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

£) Cost of circumvention should match attacker and
resource protected

©) Eg, length of password
£) But, many attacks are easy when you know the bug

Sometimes: compromise recording

©) Recording a security failure can be almost as good
as preventing it
©) But, few things in software can't be erased by root

Outline

More secure design principles

Separate the control plane

©) Keep metadata and code separate from untrusted
data

£) Bad: format string vulnerability
©) Bad: old telephone systems

Defense in depth

£) Multiple levels of protection can be better than one
£) Especially if none is perfect
£) But, many weak security mechanisms don't add up




Canonicalize names Fail-safe / fail-stop

£ If something goes wrong, behave in a way that's safe

£) Often better to stop execution than continue in
corrupted state

©) Eg., better segfault than code injection

©) Use unique representations of objects
o) Eq. in paths, remove ., .., extra slashes, symlinks
©) Eg., use IP address instead of DNS name




