CSci 4271W
Development of Secure Software Systems
Day 23: Identity and Electronic Voting
Stephen McCamant
University of Minnesota, Computer Science \& Engineering

Imperfect detection

Many security mechanisms involve imperfect detection/classification of relevant events
Biometric authentication
Network intrusion detection
Anti-virus (malware detection)
Anything based on machine learning

Extreme biometrics examples

exact_iris_code_match: very low false positive (false authentication)
Osimilar_voice_pitch: very low false negative (false reject)

Outline

Error rate trade-offs, cont'd

Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Outline

Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Error rates: ROC curve

Where are these in ROC space?

B return REJECT;
E return ACCEPT;
F if (rand() \& 1) return ACCEPT; else return REJECT;
C if (iris()) return ACCEPT; else return REJECT;
G if (pitch()) return ACCEPT; else return REJECT;
A if (iris()) return REJECT; else return ACCEPT;
D if (iris() \&\& pitch()) return ACCEPT; else return REJECT;
H if (iris() \| pitch()) return ACCEPT; else return REJECT;

Per-website authentication

Many web sites implement their own login systems

+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want stateful login sessions

- Built by tying requests together with a shared session ID
- Must protect confidentiality and integrity

Session ID: where

Session IDs in URLs are prone to leaking

- Including via user cut-and-pasteUsual choice: non-persistent cookie
- Against network attacker, must send only under HTTPS

Because of CSRF, should also have a non-cookie unique ID

Session ID: what

- Must not be predictable
- Not a sequential counter
© Should ensure freshness
- E.g., limited validity window
- If encoding data in ID, must be unforgeable - E.g., data with properly used MAC - Negative example: crypt(username || server secret)

Session management

Create new session ID on each login
Invalidate session on logout

- Invalidate after timeout
- Usability / security tradeoff
- Needed to protect users who fail to log out from public browsers

Account management

0 Limitations on account creation

- CAPTCHA? Outside email address?
- See previous discussion on hashed password storage
- Automated password recovery
- Usually a weak spot

But, practically required for large system

Direct object references

Seems convenient: query parameter names resource directly

- E.g., database key, filename (path traversal)

Easy to forget to validate on each use

- Alternative: indirect reference like per-session table
- Not fundamentally more secure, but harder to forget check

Client and server checks

For usability, interface should show what's possible

- But must not rely on client to perform checks

Attackers can read/modify anything on the client side
Easy example: item price in hidden field

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized

- Attack: find URL when authorized, reuse when logged off
© Helped by consistent structure in code

Outline
Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Accounts versus identities

- "Identity" is a broad term that can refer to a personal conception or an automated sytem
0 "Name" is also ambiguous in this way
0 "Account" and "authentication" refer unambiguously to institutional/computer abstractions
- Any account system is only an approximation of the real world

Real human names are messy

Most assumptions your code might make will fail for someone

- ASCII, length limit, uniqueness, unchanging, etc.

0 So, don't design in assumptions about real names
© Use something more computer-friendly as the core identifier

- Make "real" names or nicknames a presentation aspect

Identity documents: mostly unhelpful
"Send us a scan of your driver's license"

- Sometimes called for by specific regulations
- Unnecessary storage is a disclosure risk
- Fake IDs are very common

Identity numbers: mostly unhelpful

- Common US example: social security number
- Variously used as an identifier or an authenticator
- Dual use is itself a cause for concern
- Known by many third parties (e.g., banks)
- No checksum, guessing risks
\square Published soon after a person dies

Backup auth suggestion: use time

- Need for backup often comes for infrequently-used accounts
- May be acceptable to slow down recovery if it reduces attack risk
- Account recovery is a hassle anyway
[. Time can allow legitimate owner to notice malicious request

Outline

Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Elections as a challenge problem

Elections require a tricky balance of openness and secrecy
0 Important to society as a whole - But not a big market

- Computer security experts react to proposals that seem insecure

History of US election mechanisms

For first century or so, no secrecy e Secret ballot adopted in late 1800s

- Punch card ballots allowed machine counting
- Common by 1960s, as with computers
- Still common in 2000, decline thereafter
- How to add more technology and still have high security?

Secrecy, vote buying and coercion

- Alice's vote can't be matched with her name (unlinkable anonymity)
- Alice can't prove to Bob who she voted for (receipt-free)
- Best we can do to discourage:
- Bob pays Alice $\$ 50$ for voting for Charlie
- Bob fires Alice if she doesn't vote for Charlie

Politics and elections

In a stable democracy, most candidates will be "pro-election"- But, details differ based on political realities
[0 "Voting should be easy and convenient" - Especially for people likely to vote for me

0. "No one should vote who isn't eligible"

- Especially if they'd vote for my opponent

Election integrity

- Tabulation should reflect actual votes
- No valid votes removed
- No fake votes inserted

Best: attacker can't change votes
0 Easier: attacker can't change votes without getting caught

Election verifiability

We can check later that the votes were tabulated correctly

- Alice, that her vote was correctly cast
- Anyone, that the counting was accurate
\square In paper systems, "manual recount" is a privileged operation

Errors and Florida

[) Detectable mistakes:

- Overvote: multiple votes in one race
- Undervote: no vote in a race, also often intentional
© Undetectable mistakes: vote for wrong candidate
- 2000 presidential election in Florida illustrated all these, "wake-up call"

Precinct-count optical scan

Good current paper system, used here in MN
Voter fills in bubbles with pen

- Ballot scanned in voter's presence
- Can reject on overvote

Paper ballot retained for auditing

Vote by mail

By mail universal in OR, WA, CO, HI, UT

- Many other states have lenient absentee systems - Some people are legitimately absent - Big for a one-time reason in 2020

Security perspective: makes buying/coercion easy - Doesn't appear to currently be a big problem

DRE (touchscreen) voting
(0) "Direct-recording electronic": basically just a computer that presents and counts votes
\square In US, touchscreen is predominant interface

- Cheaper machines may just have buttons
- Simple, but centralizes trust in the machine

Adding an audit trail

VVPAT: voter-verified paper audit trail
DRE machine prints a paper receipt that the voter looks at
0 Goal is to get the independence and verifiability of a paper marking system

Trusted client problem

- Everything the voter knows is mediated by the machine
- (For Internet or DRE without VVPAT)
- Must trust machine to present and record accurately
- A lot can go wrong
- Especially if the machine has a whole desktop OS inside
- Or a bunch of poorly audited custom code

Outline

Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Should we use DRE at all?

One answer: no, that's a bad design
0 More pragmatic: maybe we can make this work

- DREs have advantages in cost, disability access
- If we implemented them well, they should be OK - Challenge: evaluating them in advance

US equipment market

- Voting machines are low volume, pretty expensive 0 But jurisdictions are cost-conscious
0 Makers are mostly small companies
- One was temporarily owned by the larger Diebold

Big market pressures: regulations, ease of administration

Security ecosystem

- Voting fraud appears to be very rare
- Few elections worth stealing - Important ones are watched closely - Stiff penalties deter in-US attackers

Downside: No feedback from real attacks
. Main mechanism is certification, with its limitations

Diebold case study

- Major manufacturer in early 2000s
- During a post-2000 purchasing boom - Since sold and renamed

0 Thoroughly targeted by independent researchers

- Impolitic statement, blood in the water

Later state-authorized audits found comprehensive problems

- Your reading: from California

Physical security

- Locked case; cheap lock as in hotel mini-bar
- Device displays management menu on detected malfunction
- Can be triggered in booth by unspecified use of paperclipTamper-evident seals? Not a strong protection

Buffer overflows, etc.

- Format string vulnerability
- "Page \%d of \%d"

0 Was this audited?
TCHAR name;
_stprintf(\&name,
_T("
Storage Card
\%s"), findData.cFileName);

Web-like vulnerabilities

In management workstation software:
SQL injection
Authentication logic encoded only in
enabled/disabled UI elements

- E.g., buttons grayed out if not administrator
- Not quite as obviously wrong as in web context
- But still exploitable with existing tools

OpenSSL mistakes

- Good news: they used OpenSSL
e Bad news: old, buggy version
0 Insufficient entropy in seeding PRNG
- Good interface from desktop Windows missing in WinCE

Every device ships with same certificate and password

Election definitions

0 Integrity "protected" by unkeyed, non-crypto checksum

- Can change bounding boxes for buttons - Without changing checksum!
- Can modify candidate names used in final report
- E.g. to fix misspelling; security implication mentioned in comment

Secrecy problems

Limited, since the DRE doesn't see registration information
But, records timestamp and order of voting Could be correlated with hidden camera or corrupted poll worker

Voting machine viruses

0 Two-way data flow between voting and office machines

- Hijacking vuln's in software on both sides
$0 \rightarrow$ can write virus to propagate between machines
- Leverage small amount of physical access

Subtle ways to steal votes

0 Change a few votes your way, revert if the voter notices

- Compare: flip coin to split lunch
- Control the chute for where VVPAT receipts go Exchange votes between provisional and regular voters

Outline

Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

End-to-end integrity and verification

Tabulation cannot be 100\% public
But how can we still have confidence in it?
Cryptography to the rescue, maybe

- Techniques from privacy systems, others
- Adoption requires to be very usable

Commitment to values

0 Two phases: commit, later open

- Similar to one use of envelopes
- Binding property: can only commit to a single value

0 Hiding property: value not revealed until opened

Election mix-nets

0. Independent election authorities similar to remailers
© Multi-encrypt ballot, each authority shuffles and decrypts

- Extra twist: prove no ballots added or removed, without revealing permutation
- Instance of "zero-knowledge proof"
© Privacy preserved as long as at least one authority is honest

Pattern voting attack

Widely applicable against techniques that reveal whole (anonymized) ballots

- Even a single race, if choices have enough entropy - 3-choice IRV with 35 candidates: 15 bits Buyer says: vote first for Bob, then 2nd and 3rd for Kenny and Xavier
- Chosen so ballot is unique

Fun tricks with paper: visual crypto

Want to avoid trusted client, but voters can't do computations by hand

- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:

Scantegrity II

- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink

Single trusted shuffle

- Checked by random audits of commitments

