Imperfect detection
Many security mechanisms involve imperfect detection/classification of relevant events
- Biometric authentication
- Network intrusion detection
- Anti-virus (malware detection)
- Anything based on machine learning

Extreme biometrics examples
- exact_iris_code_match: very low false positive (false authentication)
- similar_voice_pitch: very low false negative (false reject)

Error rates: ROC curve

Where are these in ROC space?

B return REJECT;
E return ACCEPT;
F if (rand() & 1) return ACCEPT; else return REJECT;
C if (iris()) return ACCEPT; else return REJECT;
G if (pitch()) return ACCEPT; else return REJECT;
A if (iris()) return REJECT; else return ACCEPT;
D if (iris() && pitch()) return ACCEPT; else return REJECT;
H if (iris() || pitch()) return ACCEPT; else return REJECT;

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls
Building a session
- HTTP was originally stateless, but many sites want stateful login sessions
- Built by tying requests together with a shared session ID
- Must protect confidentiality and integrity

Session ID: what
- Must not be predictable
 - Not a sequential counter
- Should ensure freshness
 - E.g., limited validity window
- If encoding data in ID, must be unforgeable
 - E.g., data with properly used MAC
 - Negative example: crypt(username || server secret)

Session ID: where
- Session IDs in URLs are prone to leaking
 - Including via user cut-and-paste
- Usual choice: non-persistent cookie
 - Against network attacker, must send only under HTTPS
- Because of CSRF, should also have a non-cookie unique ID

Session management
- Create new session ID on each login
- Invalidate session on logout
- Invalidate after timeout
 - Usability / security tradeoff
 - Needed to protect users who fail to log out from public browsers

Account management
- Limitations on account creation
 - CAPTCHA? Outside email address?
- See previous discussion on hashed password storage
- Automated password recovery
 - Usually a weak spot
 - But, practically required for large system

Client and server checks
- For usability, interface should show what’s possible
- But must not rely on client to perform checks
- Attackers can read/modify anything on the client side
 - Easy example: item price in hidden field

Direct object references
- Seems convenient: query parameter names resource directly
 - E.g., database key, filename (path traversal)
- Easy to forget to validate on each use
- Alternative: indirect reference like per-session table
 - Not fundamentally more secure, but harder to forget check

Function-level access control
- E.g., pages accessed by URLs or interface buttons
- Must check each time that user is authorized
 - Attack: find URL when authorized, reuse when logged off
- Helped by consistent structure in code
Outline

Error rate trade-offs, cont'd
Web authentication
Names and Identities
Elections and their security
System security of electronic voting
End-to-end verification

Accounts versus identities

- "Identity" is a broad term that can refer to a personal conception or an automated system
- "Name" is also ambiguous in this way
- "Account" and "authentication" refer unambiguously to institutional/computer abstractions
- Any account system is only an approximation of the real world

Real human names are messy

- Most assumptions your code might make will fail for someone
 - ASCII, length limit, uniqueness, unchanging, etc.
- So, don’t design in assumptions about real names
- Use something more computer-friendly as the core identifier
 - Make “real” names or nicknames a presentation aspect

Zooko’s triangle

- Claims (2001) it is hard/impossible for a naming scheme to be simultaneously:
 - Human-meaningful
 - Secure
 - Decentralized
- Too imprecise to be definitively proven/refuted
 - Blockchain-based name systems are highest-profile claimed counterexamples
- A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

- “Send us a scan of your driver’s license”
 - Sometimes called for by specific regulations
 - Unnecessary storage is a disclosure risk
 - Fake IDs are very common

Identity numbers: mostly unhelpful

- Common US example: social security number
- Variously used as an identifier or an authenticator
 - Dual use is itself a cause for concern
- Known by many third parties (e.g., banks)
- No checksum, guessing risks
- Published soon after a person dies

“Identity theft”

- The first-order crime is impersonation fraud between two other parties
 - E.g., criminal trying to get money from a bank under false pretenses
- The impersonated “victim” is effectively victimized by follow-on false statements
 - E.g., by credit reporting agencies
 - These costs are arguably the result of poor regulatory choices
- Be careful w/ negative info from 3rd parties

Backup auth suggestion: use time

- Need for backup often comes for infrequently-used accounts
- May be acceptable to slow down recovery if it reduces attack risk
 - Account recovery is a hassle anyway
- Time can allow legitimate owner to notice malicious request
Elections as a challenge problem
- Elections require a tricky balance of openness and secrecy
- Important to society as a whole
 - But not a big market
- Computer security experts react to proposals that seem insecure

History of US election mechanisms
- For first century or so, no secrecy
 - Secret ballot adopted in late 1800s
- Punch card ballots allowed machine counting
 - Common by 1960s, as with computers
 - Still common in 2000, decline thereafter
- How to add more technology and still have high security?

Election integrity
- Tabulation should reflect actual votes
 - No valid votes removed
 - No fake votes inserted
- Best: attacker can't change votes
- Easier: attacker can't change votes without getting caught

Secrecy, vote buying and coercion
- Alice's vote can't be matched with her name (unlinkable anonymity)
- Alice can't prove to Bob who she voted for (receipt-free)
- Best we can do to discourage:
 - Bob pays Alice $50 for voting for Charlie
 - Bob fires Alice if she doesn't vote for Charlie

Election verifiability
- We can check later that the votes were tabulated correctly
- Alice, that her vote was correctly cast
- Anyone, that the counting was accurate
- In paper systems, "manual recount" is a privileged operation

Politics and elections
- In a stable democracy, most candidates will be "pro-election"
- But, details differ based on political realities
- "Voting should be easy and convenient"
 - Especially for people likely to vote for me
- "No one should vote who isn't eligible"
 - Especially if they'd vote for my opponent

Errors and Florida
- Detectable mistakes:
 - Overvote: multiple votes in one race
 - Undervote: no vote in a race, also often intentional
- Undetectable mistakes: vote for wrong candidate
- 2000 presidential election in Florida illustrated all these, "wake-up call"
Precinct-count optical scan
- Good current paper system, used here in MN
- Voter fills in bubbles with pen
- Ballot scanned in voter’s presence
- Can reject on overvote
- Paper ballot retained for auditing

Vote by mail
- By mail universal in OR, WA, CO, HI, UT
 - Many other states have lenient absentee systems
 - Some people are legitimately absent
 - Big for a one-time reason in 2020
- Security perspective: makes buying/coercion easy
 - Doesn't appear to currently be a big problem

Vote by web?
- An obvious next step
- But, further multiplies the threats
- No widespread use in US yet
- Unusual adversarial test in D.C. thoroughly compromised by U. Michigan team

DRE (touchscreen) voting
- "Direct-recording electronic": basically just a computer that presents and counts votes
- In US, touchscreen is predominant interface
 - Cheaper machines may just have buttons
 - Simple, but centralizes trust in the machine

Adding an audit trail
- VVPAT: voter-verified paper audit trail
- DRE machine prints a paper receipt that the voter looks at
- Goal is to get the independence and verifiability of a paper marking system

Outline
- Error rate trade-offs, cont'd
- Web authentication
- Names and Identities
- Elections and their security
- System security of electronic voting
- End-to-end verification

Trusted client problem
- Everything the voter knows is mediated by the machine
 - (For Internet or DRE without VVPAT)
- Must trust machine to present and record accurately
- A lot can go wrong
 - Especially if the machine has a whole desktop OS inside
 - Or a bunch of poorly audited custom code

Should we use DRE at all?
- One answer: no, that's a bad design
- More pragmatic: maybe we can make this work
 - DREs have advantages in cost, disability access
 - If we implemented them well, they should be OK
 - Challenge: evaluating them in advance
US equipment market
- Voting machines are low volume, pretty expensive
- But jurisdictions are cost-conscious
- Makers are mostly small companies
 - One was temporarily owned by the larger Diebold
- Big market pressures: regulations, ease of administration

Security ecosystem
- Voting fraud appears to be very rare
- Few elections worth stealing
- Important ones are watched closely
- Stiff penalties deter in-US attackers
- Downside: No feedback from real attacks
- Main mechanism is certification, with its limitations

Diebold case study
- Major manufacturer in early 2000s
 - During a post-2000 purchasing boom
 - Since sold and renamed
- Thoroughly targeted by independent researchers
 - Impolitic statement, blood in the water
- Later state-authorized audits found comprehensive problems
 - Your reading: from California

Physical security
- Locked case; cheap lock as in hotel mini-bar
- Device displays management menu on detected malfunction
 - Can be triggered in booth by unspecified use of paperclip
- Tamper-evident seals? Not a strong protection

Buffer overflows, etc.
- Format string vulnerability
 - "Page %d of %d"
- Was this audited?

TCHAR name;
_stprintf(&name,
 _T("\\Storage Card\\%s"),
 findData.cFileName);

Web-like vulnerabilities
 In management workstation software:
 - SQL injection
 - Authentication logic encoded only in enabled/disabled UI elements
 - E.g., buttons grayed out if not administrator
 - Not quite as obviously wrong as in web context
 - But still exploitable with existing tools

OpenSSL mistakes
- Good news: they used OpenSSL
 - Bad news: old, buggy version
- Insufficient entropy in seeding PRNG
 - Good interface from desktop Windows missing in WinCE
- Every device ships with same certificate and password

Election definitions
- Integrity "protected" by unkeyed, non-crypto checksum
- Can change bounding boxes for buttons
 - Without changing checksum!
- Can modify candidate names used in final report
 - E.g. to fix misspelling; security implication mentioned in comment
Secrecy problems

- Limited, since the DRE doesn't see registration information
- But, records timestamp and order of voting
- Could be correlated with hidden camera or corrupted poll worker

Voting machine viruses

- Two-way data flow between voting and office machines
- Hijacking vuln's in software on both sides
- Can write virus to propagate between machines
- Leverage small amount of physical access

Subtle ways to steal votes

- Change a few votes your way, revert if the voter notices
 - Compare: flip coin to split lunch
 - Control the chute for where VVPAT receipts go
 - Exchange votes between provisional and regular voters

Outline

- Error rate trade-offs, cont'd
- Web authentication
- Names and Identities
- Elections and their security
- System security of electronic voting
- End-to-end verification

End-to-end integrity and verification

- Tabulation cannot be 100% public
- But how can we still have confidence in it?
- Cryptography to the rescue, maybe
 - Techniques from privacy systems, others
 - Adoption requires to be very usable

Commitment to values

- Two phases: commit, later open
 - Similar to one use of envelopes
- Binding property: can only commit to a single value
- Hiding property: value not revealed until opened

Randomized auditing

- How can I prove what's in the envelope without opening it?
- \(\frac{1}{n} \) envelopes, you pick one and open the rest
 - Chance \(\frac{1}{n} \) of successful cheating
- Better protection with repetition

Election mix-nets

- Independent election authorities similar to remailers
- Multi-encrypt ballot, each authority shuffles and decrypts
- Extra twist: prove no ballots added or removed, without revealing permutation
 - Instance of "zero-knowledge proof"
- Privacy preserved as long as at least one authority is honest
Pattern voting attack

- Widely applicable against techniques that reveal whole (anonymized) ballots
- Even a single race, if choices have enough entropy
 - 3-choice IRV with 35 candidates: 15 bits
- Buyer says: vote first for Bob, then 2nd and 3rd for Kenny and Xavier
 - Chosen so ballot is unique

Fun tricks with paper: visual crypto

- Want to avoid trusted client, but voters can't do computations by hand
- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:

Scantegrity II

- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink
- Single trusted shuffle
 - Checked by random audits of commitments