Identity numbers: mostly unhelpful
- Common US example: social security number
- Variously used as an identifier or an authenticator
 - Dual use is itself a cause for concern
- Known by many third parties (e.g., banks)
- No checksum, guessing risks
- Published soon after a person dies

"Identity theft"
- The first-order crime is impersonation fraud between two other parties
 - E.g., criminal trying to get money from a bank under false pretenses
- The impersonated "victim" is effectively victimized by follow-on false statements
 - E.g., by credit reporting agencies
 - These costs are arguably the result of poor regulatory choices
- Be careful w/ negative info from 3rd parties

Backup auth suggestion: use time
- Need for backup often comes for infrequently-used accounts
- May be acceptable to slow down recovery if it reduces attack risk
 - Account recovery is a hassle anyway
- Time can allow legitimate owner to notice malicious request

Elections as a challenge problem
- Elections require a tricky balance of openness and secrecy
- Important to society as a whole
 - But not a big market
- Computer security experts react to proposals that seem insecure

History of US election mechanisms
- For first century or so, no secrecy
 - Secret ballot adopted in late 1800s
- Punch card ballots allowed machine counting
 - Common by 1960s, as with computers
 - Still common in 2000, decline thereafter
- How to add more technology and still have high security?
<table>
<thead>
<tr>
<th>Election integrity</th>
<th>Secrecy, vote buying and coercion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulation should reflect actual votes</td>
<td>Alice's vote can't be matched with her name (unlinkable anonymity)</td>
</tr>
<tr>
<td>- No valid votes removed</td>
<td>- Alice can't prove to Bob who she voted for (receipt-free)</td>
</tr>
<tr>
<td>- No fake votes inserted</td>
<td>Best we can do to discourage:</td>
</tr>
<tr>
<td>- Best: attacker can't change votes</td>
<td>- Bob pays Alice $50 for voting for Charlie</td>
</tr>
<tr>
<td>- Easier: attacker can't change votes without getting caught</td>
<td>- Bob fires Alice if she doesn't vote for Charlie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election verifiability</th>
<th>Politics and elections</th>
</tr>
</thead>
<tbody>
<tr>
<td>We can check later that the votes were tabulated correctly</td>
<td>In a stable democracy, most candidates will be "pro-election"</td>
</tr>
<tr>
<td>Alice, that her vote was correctly cast</td>
<td>But, details differ based on political realities</td>
</tr>
<tr>
<td>Anyone, that the counting was accurate</td>
<td>"Voting should be easy and convenient"</td>
</tr>
<tr>
<td>In paper systems, "manual recount" is a privileged operation</td>
<td>- Especially for people likely to vote for me</td>
</tr>
<tr>
<td></td>
<td>- "No one should vote who isn't eligible"</td>
</tr>
<tr>
<td></td>
<td>- Especially if they'd vote for my opponent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors and Florida</th>
<th>Shifting politics of elections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectable mistakes:</td>
<td>Until recently, concerns about electronic voting security were more associated with Democrats/the left</td>
</tr>
<tr>
<td>- Overvote: multiple votes in one race</td>
<td>- Including larger proportion of academics</td>
</tr>
<tr>
<td>- Undervote: no vote in a race, also often intentional</td>
<td>But more prominently voiced by Republicans in 2020</td>
</tr>
<tr>
<td>Undetectable mistakes: vote for wrong candidate</td>
<td>Ideal: system needs to demonstrate security to a skeptical but good-faith observer</td>
</tr>
<tr>
<td>2000 presidential election in Florida illustrated all these, "wake-up call"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precinct-count optical scan</th>
<th>Vote by mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good current paper system, used here in MN</td>
<td>By mail universal in OR, WA, CO, HI, UT</td>
</tr>
<tr>
<td>Voter fills in bubbles with pen</td>
<td>- Many other states have lenient absentee systems</td>
</tr>
<tr>
<td>Ballot scanned in voter's presence</td>
<td>- Some people are legitimately absent</td>
</tr>
<tr>
<td>- Can reject on overvote</td>
<td>- Big for a one-time reason in 2020</td>
</tr>
<tr>
<td>Paper ballot retained for auditing</td>
<td>Security perspective: makes buying/coercion easy</td>
</tr>
<tr>
<td></td>
<td>- Doesn't appear to currently be a big problem, though worse than in-person</td>
</tr>
</tbody>
</table>
Vote by web?
- An obvious next step
- But, further multiplies the threats
- No widespread use in US yet
- Unusual adversarial test in D.C. thoroughly compromised by U. Michigan team

DRE (touchscreen) voting
- "Direct-recording electronic": basically just a computer that presents and counts votes
- In US, touchscreen is predominant interface
 - Cheaper machines may just have buttons
- Simple, but centralizes trust in the machine

Adding an audit trail
- VVPAT: voter-verified paper audit trail
- DRE machine prints a paper receipt that the voter looks at
- Goal is to get the independence and verifiability of a paper marking system

Outline
- Names and Identities (cont’d)
- Elections and their security
- System security of electronic voting
- End-to-end verification

Trusted client problem
- Everything the voter knows is mediated by the machine
 - (For Internet or DRE without VVPAT)
- Must trust machine to present and record accurately
- A lot can go wrong
 - Especially if the machine has a whole desktop OS inside
 - Or a bunch of poorly audited custom code

Should we use DRE at all?
- One answer: no, that’s a bad design
- More pragmatic: maybe we can make this work
 - DREs have advantages in cost, disability access
 - If we implemented them well, they should be OK
 - Challenge: evaluating them in advance

US equipment market
- Voting machines are low volume, pretty expensive
- But jurisdictions are cost-conscious
- Makers are mostly small companies
 - One was temporarily owned by the larger Diebold
- Big market pressures: regulations, ease of administration

Security ecosystem
- Voting fraud appears to be very rare
 - Few elections worth stealing
 - Important ones are watched closely
 - Stiff penalties deter in-US attackers
- Downside: No feedback from real attacks
- Main mechanism is certification, with its limitations
Diebold case study

- Major manufacturer in early 2000s
 - During a post-2000 purchasing boom
 - Since sold and renamed
- Thoroughly targeted by independent researchers
 - Impolitic statement, blood in the water
- Later state-authorized audits found comprehensive problems
 - Your reading: from California

Physical security

- Locked case; cheap lock as in hotel mini-bar
- Device displays management menu on detected malfunction
 - Can be triggered in booth by unspecified use of paperclip
- Tamper-evident seals? Not a strong protection

Buffer overflows, etc.

- Format string vulnerability
 - "Page %d of %d"
- Was this audited?

```c
TCHAR name;
_stprintf(&name,
  _T("\Storage Card\%s"),
  findData.cFileName);
```

Web-like vulnerabilities

In management workstation software:

- SQL injection
- Authentication logic encoded only in enabled/disabled UI elements
 - E.g., buttons grayed out if not administrator
 - Not quite as obviously wrong as in web context
 - But still exploitable with existing tools

OpenSSL mistakes

- Good news: they used OpenSSL
 - Bad news: old, buggy version
- Insufficient entropy in seeding PRNG
 - Good interface from desktop Windows missing in WinCE
- Every device ships with same certificate and password

Election definitions

- Integrity "protected" by unkeyed, non-crypto checksum
 - Can change bounding boxes for buttons
 - Without changing checksum!
 - Can modify candidate names used in final report
 - E.g., to fix misspelling; security implication mentioned in comment

Secrecy problems

- Limited, since the DRE doesn't see registration information
- But, records timestamp and order of voting
- Could be correlated with hidden camera or corrupted poll worker

Voting machine viruses

- Two-way data flow between voting and office machines
- Hijacking vuln's in software on both sides
- Can write virus to propagate between machines
- Leverage small amount of physical access
Subtle ways to steal votes
- Change a few votes your way, revert if the voter notices
 - Compare: flip coin to split lunch
- Control the chute for where VVPAT receipts go
- Exchange votes between provisional and regular voters

Outline
- Names and Identities (cont'd)
- Elections and their security
- System security of electronic voting
- End-to-end verification

End-to-end integrity and verification
- Tabulation cannot be 100% public
- But how can we still have confidence in it?
- Cryptography to the rescue, maybe
 - Techniques from privacy systems, others
 - Adoption requires to be very usable

Commitment to values
- Two phases: commit, later open
 - Similar to one use of envelopes
- Binding property: can only commit to a single value
- Hiding property: value not revealed until opened

Randomized auditing
- How can I prove what's in the envelope without opening it?
 - n envelopes, you pick one and open the rest
 - Chance $1/n$ of successful cheating
- Better protection with repetition

Election mix-nets
- Independent election authorities similar to remailers
- Multi-encrypt ballot, each authority shuffles and decrypts
- Extra twist: prove no ballots added or removed, without revealing permutation
 - Instance of "zero-knowledge proof"
- Privacy preserved as long as at least one authority is honest

Pattern voting attack
- Widely applicable against techniques that reveal whole (anonymized) ballots
- Even a single race, if choices have enough entropy
 - 3-choice IRV with 35 candidates: 15 bits
- Buyer says: vote first for Bob, then 2nd and 3rd for Kenny and Xavier
 - Chosen so ballot is unique

Fun tricks with paper: visual crypto
- Want to avoid trusted client, but voters can't do computations by hand
- Analogues to crypto primitives using physical objects
- One-time pad using transparencies:
Scantegrity II

- Designed as end-to-end add-on to optical scan system
- Fun with paper 2: invisible ink
- Single trusted shuffle
 - Checked by random audits of commitments