
CSci 4271W
Development of Secure Software Systems
Day 25: Voting, anonymity, and usability

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

System security of electronic voting (cont’d)

Anonymous communications techniques

End-to-end verification

Usability and security

Usable security example areas

Subtle ways to steal votes

Change a few votes your way, revert if the voter
notices

Compare: flip coin to split lunch

Control the chute for where VVPAT receipts go

Exchange votes between provisional and regular
voters

Outline

System security of electronic voting (cont’d)

Anonymous communications techniques

End-to-end verification

Usability and security

Usable security example areas

Traffic analysis

What can you learn from encrypted data? A lot

Content size, timing

Who’s talking to who
! countermeasure: anonymity

Nymity slider (Goldberg)

Verinymity
Social security number

Persistent pseudonymity
Pen name (“George Eliot”), “moot”

Linkable anonymity
Frequent-shopper card

Unlinkable anonymity
(Idealized) cash payments

Nymity ratchet?

It’s easy to add names on top of an anonymous
protocol

The opposite direction is harder

But, we’re stuck with the Internet as is

So, add anonymity to conceal underlying identities

Steganography

One approach: hide real content within bland-looking
cover traffic

Classic: hide data in least-significant bits of images

Easy to fool casual inspection, hard if adversary
knows the scheme



Dining cryptographers Dining cryptographers

Dining cryptographers Dining cryptographers

Dining cryptographers DC-net challenges

Quadratic key setups and message exchanges per
round

Scheduling who talks when

One traitor can anonymously sabotage

Improvements subject of ongoing research

Mixing/shuffling

Computer analogue of shaking a ballot box, etc.

Reorder encrypted messages by a random
permutation

Building block in larger protocols

Distributed and verifiable variants possible as well

Anonymous remailers

Anonymizing intermediaries for email
First cuts had single points of failure

Mix and forward messages after receiving a
sufficiently-large batch

Chain together mixes with multiple layers of
encryption

Fancy systems didn’t get critical mass of users



Tor: an overlay network

Tor (originally from “the onion router”)
https://www.torproject.org/

An anonymous network built on top of the
non-anonymous Internet

Designed to support a wide variety of anonymity use
cases

Low-latency TCP applications

Tor works by proxying TCP streams
(And DNS lookups)

Focuses on achieving interactive latency
WWW, but potentially also chat, SSH, etc.
Anonymity tradeoffs compared to remailers

Anonymity loves company

Diverse user pool needed for anonymity to be
meaningful

Hypothetical Department of Defense Anonymity Network

Tor aims to be helpful to a broad range of
(sympathetic sounding) potential users

Outline

System security of electronic voting (cont’d)

Anonymous communications techniques

End-to-end verification

Usability and security

Usable security example areas

End-to-end integrity and verification

Tabulation cannot be 100% public

But how can we still have confidence in it?

Cryptography to the rescue, maybe
Techniques from privacy systems, others
Adoption requires to be very usable

Commitment to values

Two phases: commit, later open
Similar to one use of envelopes

Binding property: can only commit to a single value

Hiding property: value not revealed until opened

Randomized auditing

How can I prove what’s in the envelope without
opening it?
n envelopes, you pick one and open the rest

Chance 1=n of successful cheating

Better protection with repetition

Election mix-nets

Independent election authorities similar to remailers

Multi-encrypt ballot, each authority shuffles and
decrypts
Extra twist: prove no ballots added or removed,
without revealing permutation

Instance of “zero-knowledge proof”

Privacy preserved as long as at least one authority
is honest



Pattern voting attack

Widely applicable against techniques that reveal
whole (anonymized) ballots
Even a single race, if choices have enough entropy

3-choice IRV with 35 candidates: 15 bits

Buyer says: vote first for Bob, then 2nd and 3rd for
Kenny and Xavier

Chosen so ballot is unique

Fun tricks with paper: visual crypto

Want to avoid trusted client, but voters can’t do
computations by hand

Analogues to crypto primitives using physical objects

One-time pad using transparencies:

Scantegrity II

Designed as end-to-end add-on to optical scan
system

Fun with paper 2: invisible ink

Single trusted shuffle
Checked by random audits of commitments

Outline

System security of electronic voting (cont’d)

Anonymous communications techniques

End-to-end verification

Usability and security

Usable security example areas

Users are not ‘ideal components’

Frustrates engineers: cannot give users instructions
like a computer

Closest approximation: military

Unrealistic expectations are bad for security

Most users are benign and sensible

On the other hand, you can’t just treat users as
adversaries

Some level of trust is inevitable
Your institution is not a prison

Also need to take advantage of user common sense
and expertise

A resource you can’t afford to pass up

Don’t blame users

“User error” can be the end of a discussion

This is a poor excuse

Almost any “user error” could be avoidable with
better systems and procedures

Users as rational

Economic perspective: users have goals and pursue
them

They’re just not necessarily aligned with security

Ignoring a security practice can be rational if the
rewards is greater than the risk



Perspectives from psychology

Users become habituated to experiences and
processes

Learn “skill” of clicking OK in dialog boxes

Heuristic factors affect perception of risk
Level of control, salience of examples

Social pressures can override security rules
“Social engineering” attacks

User attention is a resource

Users have limited attention to devote to security
Exaggeration: treat as fixed

If you waste attention on unimportant things, it won’t
be available when you need it

Fable of the boy who cried wolf

Research: ecological validity

User behavior with respect to security is hard to
study

Experimental settings are not like real situations

Subjects often:
Have little really at stake
Expect experimenters will protect them
Do what seems socially acceptable
Do what they think the experimenters want

Research: deception and ethics

Have to be very careful about ethics of experiments
with human subjects

Enforced by institutional review systems

When is it acceptable to deceive subjects?
Many security problems naturally include deception

Outline

System security of electronic voting (cont’d)

Anonymous communications techniques

End-to-end verification

Usability and security

Usable security example areas

Email encryption

Technology became available with PGP in the early
90s
Classic depressing study: “Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)
Still an open “challenge problem”
Also some other non-UI difficulties: adoption, govt.
policy

Phishing

Attacker sends email appearing to come from an
institution you trust

Links to web site where you type your password,
etc.

Spear phishing: individually targeted, can be much
more effective

Phishing defenses

Educate users to pay attention to X:
Spelling ! copy from real emails
URL ! homograph attacks
SSL “lock” icon ! fake lock icon, or SSL-hosted attack

Extended validation (green bar) certificates

Phishing URL blacklists



SSL warnings: prevalence

Browsers will warn on SSL certificate problems

In the wild, most are false positives
foo.com vs. www.foo.com
Recently expired
Technical problems with validation
Self-signed certificates (HA2)

Classic warning-fatigue danger

Older SSL warning

SSL warnings: effectiveness

Early warnings fared very poorly in lab settings

Recent browsers have a new generation of designs:
Harder to click through mindlessly
Persistent storage of exceptions

Recent telemetry study: they work pretty well

Modern Firefox warning

Modern Firefox warning (2) Modern Firefox warning (3)

Spam-advertised purchases

“Replica” Rolex watches, herbal V!@gr@, etc.

This business is clearly unscrupulous; if I pay, will I
get anything at all?
Empirical answer: yes, almost always

Not a scam, a black market
Importance of credit-card bank relationships

Advance fee fraud

“Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
Short answer: false positives

Sending spam is cheap
But, luring victims is expensive
Scammer wants to minimize victims who respond but
ultimately don’t pay



Trusted UI

Tricky to ask users to make trust decisions based
on UI appearance

Lock icon in browser, etc.

Attacking code can draw lookalike indicators
Lock favicon
Picture-in-picture attack

Smartphone app permissions

Smartphone OSes have more fine-grained
per-application permissions

Access to GPS, microphone
Access to address book
Make calls

Phone also has more tempting targets

Users install more apps from small providers

Permissions manifest

Android approach: present listed of requested
permissions at install time
Can be hard question to answer hypothetically

Users may have hard time understanding implications

User choices seem to put low value on privacy

Time-of-use checks

iOS approach: for narrower set of permissions, ask
on each use

Proper context makes decisions clearer

But, have to avoid asking about common things

iOS app store is also more closely curated

Trusted UI for privileged actions

Trusted UI works better when asking permission
(e.g., Oakland’12)
Say, “take picture” button in phone app

Requested by app
Drawn and interpreted by OS
OS well positioned to be sure click is real

Little value to attacker in drawing fake button


