
CSci 4271W
Development of Secure Software Systems

Day 27: More low-level defenses
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Why is this important?

This is a relatively new class: help us figure out what
we should do differently next time

Which things worked well, which things should be
different?

What should there be more of, and what less of?

How do the topics compare with what you
expected?

SRT logistics

All online this semester
Requested but not required; can’t affect your grade
one way or the other
Primary evaluation combines Prof. McCamant and
the course
Please also evaluate Saugata separately if you have
comments or suggestions about his performance
Open through the last regular class day

SRT URL

https://srt.umn.edu/blue

We’ll have a 15-minute break in class material that
we request you use for filling out the evaluation

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Logistics reminders

Two components: fixing patch and revised report

Take advantage of sample attacks posted on Piazza

Page limit increased to 6 pages, may need to
reduce some old material

Still need to decide what’s most important

Due on Canvas by Wednesday night

Big picture

If you didn’t follow the requirements the first time, do
this time

Don’t spend too much time describing the program

Your attack understanding should be supported by
concrete details

Use exemption of figures from length limit

Writing reminders

Use complete sentences (e.g., avoid comma splices)

Avoid being too “editorial” (facts over opinions)

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on 32-bit x86:
Direct jumps are relative
Function pointers are absolute
Data must be absolute

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance

What’s not covered

Main executable (Linux 32-bit PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Some philosophy

Remember allowlist vs. denylist?

Rather than specific attacks, tighten behavior
Compare: type system; garbage collector vs.
use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return points

n sets: needs possibly-difficult points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal targets

Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed code

Recent advances: COTS

Commercial off-the-shelf binaries

CCFIR (Berkeley+PKU, Oakland’13): Windows

CFI for COTS Binaries (Stony Brook, USENIX’13):
Linux

COTS techniques

CCFIR: use Windows ASLR information to find targets

Linux paper: keep copy of original binary, build
translation table

Control-Flow Guard

CFI-style defense now in latest Windows systems

Compiler generates tables of legal targets

At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

“Out of Control” paper, Oakland’14

Limit to gadgets allowed by coarse policy
Indirect call to function entry
Return to point after call site (“call-preceded”)

Use existing direct calls to VirtualProtect

Also used against kBouncer

Control-flow bending counter-attack

Control-flow attacks that still respect the CFG

Especially easy without a shadow stack

Printf-oriented programming generalizes
format-string attacks

Outline

Return address protections

Intermission for SRT

Report revision suggestions

ASLR and counterattacks

Control-flow integrity (CFI)

More modern exploit techniques

Target #1: web browsers

Widely used on desktop and mobile platforms

Easily exposed to malicious code

JavaScript is useful for constructing fancy attacks

Heap spraying

How to take advantage of uncontrolled jump?

Maximize proportion of memory that is a target

Generalize NOP sled idea, using benign allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our sleds?

Exploit unaligned execution:
Benign but weird high-level code (bitwise ops. with
constants)
Benign but predictable JITted code
Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

Use-after-free

Low-level memory error of choice in web browsers

Not as easily audited as buffer overflows

Can lurk in attacker-controlled corner cases

JavaScript and Document Object Model (DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native code with SFI
Extra instruction-level checks somewhat like CFI

Each web page rendered in own, less-trusted
process
But not easy to make sandboxes secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete Chrome exploits
First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed hardening
opportunities”

Each got $60k, bugs promptly fixed

