Δ_{2} If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ what are the dimensions of \boldsymbol{A}^{\dagger} ?, $\boldsymbol{A}^{\dagger} \boldsymbol{A}$?, $\boldsymbol{A} \boldsymbol{A}^{\dagger}$?
Solution: The dimension of $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is $\boldsymbol{n} \times \boldsymbol{m}$ and so $\boldsymbol{A}^{\dagger} \boldsymbol{A}$? is of size $\boldsymbol{n} \times \boldsymbol{n}$. Similarly, $\boldsymbol{A} \boldsymbol{A}^{\dagger}$ is of size $m \times m . \square$

03 Show that $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is an orthogonal projector. What are its range and null-space?
Solution: One way to do this is to use the rank-one expansion: $\boldsymbol{A}=\sum \sigma_{i} u_{i} \boldsymbol{v}_{i}^{T}$. Then $\boldsymbol{A}^{\dagger}=$ $\sum \frac{1}{\sigma_{i}} v_{i} u_{i}^{T}$ and therefore,

$$
\boldsymbol{A}^{\dagger} A=\left[\sum_{i=1}^{r} \frac{1}{\sigma_{i}} \boldsymbol{v}_{i} \boldsymbol{u}_{i}^{T}\right] \times\left[\sum_{j=1}^{r} \sigma_{j} u_{j} \boldsymbol{v}_{j}^{T}\right]=\sum_{j=1}^{r} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{T}
$$

which is a projector. \square
\& 4 Same question for $\boldsymbol{A} \boldsymbol{A}^{\dagger}$..

Solution: In this case we have

$$
\boldsymbol{A} \boldsymbol{A}^{\dagger}=\left[\sum_{j=1}^{r} \sigma_{j} u_{j} \boldsymbol{v}_{j}^{T}\right]\left[\sum_{i=1}^{r} \frac{1}{\sigma_{i}} v_{i} u_{i}^{T}\right] \times=\sum_{j=1}^{r} \boldsymbol{u}_{j} u_{j}^{T}
$$

which is an orthogonal projector. \square

45 Consider the matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

- Compute the singular value decomposition of \boldsymbol{A}

Solution: The nonzero singular values of \boldsymbol{A} are the square roots of the eigenvalues of

$$
A A^{T}=\left(\begin{array}{cc}
5 & -4 \\
-4 & 5
\end{array}\right)
$$

These eigenvalues are 5 ± 4 and so $\sigma_{1}=3, \sigma_{2}=1$.

The matrix \boldsymbol{U} of the left singular vectors is the matrix

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

If $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$, then $\boldsymbol{U}^{\prime} * \boldsymbol{A}=\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$. Therefore to get \boldsymbol{V} we use the relation: $\boldsymbol{V}^{\boldsymbol{T}}=$ $\Sigma^{-1} * U^{\prime} * A$. We have

$$
U^{\prime} * A=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 4 & -1 \\
1 & 0 & 0 & 1
\end{array}\right) \rightarrow V^{T}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 / 3 & 0 & 4 / 3 & -1 / 3 \\
1 & 0 & 0 & 1
\end{array}\right) \rightarrow
$$

\square

- Find the matrix \boldsymbol{B} of rank 1 which is the closest to \boldsymbol{A} in 2-norm sense.

Solution: This is obtained by setting σ_{2} to zero in the SVD - or - equivalently as $\boldsymbol{B}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}$. You will find

$$
B=\left(\begin{array}{cccc}
1 / 2 & 0 & 2 & -1 / 2 \\
-1 / 2 & 0 & -2 & 1 / 2
\end{array}\right)
$$

\square
\&6 Show that $\boldsymbol{r}_{\boldsymbol{\epsilon}}$ equals the number sing. values that are $>\boldsymbol{\epsilon}$

Solution: This result is based on the following easy-to-prove extension of the Young=Eckhart theorem:

$$
\min _{\operatorname{rank}(B) \leq k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}
$$

which implies that if $\|\boldsymbol{A}-\boldsymbol{B}\|_{2}<\sigma_{k+1}$ then $\operatorname{rank}(\boldsymbol{B})$ must be $>\boldsymbol{k}$ - or equivalently:

$$
\|A-B\|_{2}<\sigma_{k} \rightarrow \operatorname{rank}(B) \geq k
$$

Let \boldsymbol{k} be the number that satisfies $\sigma_{k+1} \leq \epsilon<\sigma_{k}-$ which is the number of sing. values that are $>\boldsymbol{\epsilon}$. Then we see from the above that $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \leq \boldsymbol{\epsilon}$ implies that $\operatorname{rank}(\boldsymbol{B}) \geq \boldsymbol{k}$. The smallest possible rank for \boldsymbol{B} is precisely the integer \boldsymbol{k} defined above. \square

