🔼 If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of A^{\dagger} ?, $A^{\dagger}A$?, AA^{\dagger} ?

Solution: The dimension of $A^\dagger A$ is $n \times m$ and so $A^\dagger A$? is of size $n \times n$. Similarly, AA^\dagger is of size $m \times m$.

lacksquare Show that $A^\dagger A$ is an orthogonal projector. What are its range and null-space?

Solution: One way to do this is to use the rank-one expansion: $A=\sum \sigma_i u_i v_i^T$. Then $A^\dagger=\sum \frac{1}{\sigma_i}v_iu_i^T$ and therefore,

$$A^\dagger A = \left[\sum_{i=1}^r rac{1}{\sigma_i} v_i u_i^T
ight] imes \left[\sum_{j=1}^r \sigma_j u_j v_j^T
ight] = \sum_{j=1}^r v_j v_j^T$$

which is a projector.

🔼 Same question for AA^\dagger ..

Solution: In this case we have

$$AA^\dagger = \left[\sum_{j=1}^r \sigma_j u_j v_j^T
ight] \left[\sum_{i=1}^r rac{1}{\sigma_i} v_i u_i^T
ight] imes = \sum_{j=1}^r u_j u_j^T$$

which is an orthogonal projector.

∠ Consider the matrix:

$$A = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{pmatrix}$$

Compute the singular value decomposition of A

Solution: The nonzero singular values of A are the square roots of the eigenvalues of

$$AA^T = egin{pmatrix} 5 & -4 \ -4 & 5 \end{pmatrix}$$

These eigenvalues are 5 ± 4 and so $\sigma_1=3,\sigma_2=1$.

The matrix $oldsymbol{U}$ of the left singular vectors is the matrix

$$U=rac{1}{\sqrt{2}}\left(egin{array}{cc} 1 & 1 \ -1 & 1 \end{array}
ight)$$

If $A=U\Sigma V^T$, then $U'*A=\Sigma V^T$. Therefore to get V we use the relation: $V^T=\Sigma^{-1}*U'*A$. We have

$$U'*A = rac{1}{\sqrt{2}} egin{pmatrix} 1 & 0 & 4 & -1 \ 1 & 0 & 0 & 1 \end{pmatrix}
ightarrow V^T = rac{1}{\sqrt{2}} egin{pmatrix} 1/3 & 0 & 4/3 & -1/3 \ 1 & 0 & 0 & 1 \end{pmatrix}
ightarrow$$

• Find the matrix B of rank 1 which is the closest to A in 2-norm sense.

Solution: This is obtained by setting σ_2 to zero in the SVD - or - equivalently as $B=\sigma_1u_1v_1^T$. You will find

$$B = egin{pmatrix} 1/2 & 0 & 2 & -1/2 \ -1/2 & 0 & -2 & 1/2 \end{pmatrix}$$

🔼 6 Show that r_ϵ equals the number sing. values that are $>\!\!\epsilon$

Solution: This result is based on the following easy-to-prove extension of the Young=Eckhart theorem:

$$\min_{rank(B) \le k} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}$$

which implies that if $\|A-B\|_2 < \sigma_{k+1}$ then rank(B) must be > k - or equivalently:

$$\|A-B\|_2 < \sigma_k o rank(B) \geq k.$$

Let k be the number that satisfies $\sigma_{k+1} \leq \epsilon < \sigma_k$ – which is the number of sing. values that $|are>\epsilon$. Then we see from the above that $||A-B||_2 \leq \epsilon$ implies that $rank(B) \geq k$. The smallest possible rank for B is precisely the integer k defined above.