Show that $ar{X}=X(I-rac{1}{n}ee^T)$ (here e= vector of all ones). What does the projector $(I-rac{1}{n}ee^T)$ do?

Solution: Each column of \bar{X} is $\bar{x}=x-\mu$ so that $\bar{X}=X-\mu e^T$, where μ is the sample mean. But we have $\mu=\frac{1}{n}\sum x_i=\frac{1}{n}Xe$ and so,

$$ar{X} = X - rac{1}{n}Xee^T = X[I - rac{1}{n}ee^T]$$

The matrix $(I - \frac{1}{n}ee^T)$ represents a projector that centers the data so the mean is zero.

🔼 3 Show that solution $oldsymbol{V}$ also minimizes 'reconstruction error' ..

Solution: The main property that is exploited in the proof is the fact that Tr(ABC) = Tr(BCA) (when dimensions are compatible). First we note that $\sum_i \|\bar{x}_i - VV^T\bar{x}_i\|^2 = \|(I - VV^T)X_{-}F^2$. We will call P the pojector $P = VV^T$. Then:

$$\begin{aligned} \|(I - VV^T)X \cdot F^2 * &= Tr(I - P)XX^T(I - P) \\ &= Tr(XX^T - PXX^T)(I - P) \\ &= Tr(XX^T) - Tr(PXX^T) - Tr(XX^TP) + Tr(PXX^TP) \\ &= Tr(XX^T) - Tr(PXX^T) - Tr(XX^TP) + Tr(XX^TP^2) \\ &= Tr(XX^T) - Tr(PXX^T) - Tr(XX^TP) + Tr(XX^TP) \\ &= Tr(XX^T) - Tr(PXX^T) \\ &= Tr(XX^T) - Tr(V^TXX^T) \\ &= Tr(XX^T) - Tr(V^TXX^T) \\ &= Tr(XX^T) - Tr(V^TXX^TV) \end{aligned}$$

The first term is a constant, therefore the minimum is reached when the maximum of the second term is reached.

🔼 4 ... and that it also maximizes $\sum_{i,j} \| oldsymbol{y}_i - oldsymbol{y}_j \|_2^2$

Solution: Let us denote by \bar{y} the sample mean of the j_j s, i.e.,

$$ar{y} = rac{1}{n} \sum_{j=1}^n y_j.$$

We proceed backward examine the sum $\sum_{i,j} \| y_i - y_j \|_2^2$

$$egin{aligned} \sum_{i,j} \|y_i - y_j\|_2^2 &= \sum_{i,j} \|(y_i - ar{y}) - (y_j - ar{y})\|_2^2 \ &= \sum_{i,j} \left((y_i - ar{y}) - (y_j - ar{y}), (y_i - ar{y}) - (y_j - ar{y})
ight) \ &= \sum_i \sum_j \left[\|(y_i - ar{y})\|_2^2 + \|(y_j - ar{y})\|_2^2
ight] ... \ &- 2 \sum_i \sum_j \left((y_i - ar{y}), (y_j - ar{y})
ight) \ &= 2n \sum_i \|y_i - ar{y}\|_2^2 - 2 \sum_i (y_i - ar{y}, \sum_j (ar{y} - y_j)) \ &= 2n \sum_i \|y_i - ar{y}\|_2^2 \end{aligned}$$

The last equality comes from the fact that $\sum_j (ar{y} - y_j) = 0$

Further reading: Some references on applications of the SVD

For image processing:

https://arxiv.org/pdf/1211.7102.pdf

The extraordinary SVD

https://arxiv.org/pdf/1103.2338.pdf%22%20rel=%22nofollow

An outstanding paper for understanding the SVD and a few of its applications:

https://sites.math.washington.edu/~morrow/464_16/svd.pdf

An old paper of ours that discusses a form of truncated SVD for face recognition:

https://www-users.cs.umn.edu/~saad/PDF/umsi-2006-16.pdf