\& 1 Consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

Eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Solution: The eigenvalues of \boldsymbol{A} are 1 , and 2. The algebraic multiplicity of 1 is 2 . To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=1$ we need to eigenvectors. For this we need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right) u=0
$$

There is only one solution vector (up to a product by a scalar) namely:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

So the geometric multiplicity is one. \square
$\Leftrightarrow 2$ Same questions if a_{33} is replaced by one.

Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and now we have one eigenvalue algebraic multiplicity 3.

To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=\mathbf{1}$ we need to eigenvectors. For this we
need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) u=0
$$

we still get a geometric mult. of 1 . \square

L3 Same questions if in addition \boldsymbol{a}_{12} is replaced by zero.

Solution: Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and we also have one eigenvalue with algebraic multiplicity 3. The geometric multiplicity increases to $2 . \square$
Ln_{4} Show that there is at least one eigenvalue and eigenvector of $\boldsymbol{A}: \boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$, with $\|\boldsymbol{x}\|_{2}=\mathbf{1}$
Solution: This comes from the fact that the equation $\boldsymbol{P}_{\boldsymbol{A}}(\boldsymbol{\lambda})=\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda})=0$ is a
polynomial equation and as such it must have at least one root - a well-known result. \square
ms There is a unitary transformation \boldsymbol{P} such that $\boldsymbol{P} \boldsymbol{x}=\boldsymbol{e}_{1}$. How do you define \boldsymbol{P} ?

Solution: This is just the Householder transform.. See Lecture notes set number 8. \square

∞	Show that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{H}=\left(\begin{array}{l\|l}\boldsymbol{\lambda} & * * \\ \hline \mathbf{0} & \boldsymbol{A}_{2}\end{array}\right)$.....$~$

Solution: This is equivalent to showing that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{H} e_{1}=\lambda e_{1}$. We have

$$
P A P^{H} e_{1}=P A P e_{1}=P(A x)=P(\lambda x)=\lambda P x=\lambda e_{1}
$$

\& 9 Another proof altogether: use Jordan form of A and $Q R$ factorization Solution: Jordan form:

$$
A=X J X^{-1}
$$

Let $\boldsymbol{X}=Q \boldsymbol{R}_{0}$ then:

$$
A=Q R_{0} J R_{0}^{-1} Q^{H} \equiv Q R Q^{H} \quad \text { with } \quad R=R_{0} J R_{0}^{-1}
$$

\square

10 Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{array}\right)
$$

Solution: Use Gershgorin's theorem. There are 4 disks:

$$
\begin{array}{ll}
D_{1}=D(1,1) ; & D_{2}=D(2,1) \\
D_{3}=D(-3,4) ; & D_{4}=D(-4,1)
\end{array}
$$

The last disk is included in the 3rd. The spectrum is included in the union of the 3 other disks.

11 Convergence factor $\phi(\sigma)$ as a function of σ.

Solution: The eigenvalues of the shifted matrix are $\boldsymbol{\lambda}_{i}-\sigma$. When $\sigma>\left(\lambda_{1}+\lambda_{n}\right) / 2$ then the algorithm will converge toward λ_{n} because $\left|\lambda_{n}-\sigma\right|>\left|\lambda_{1}-\sigma\right|$. We will ignore this case.

Assume now that $\sigma<\left(\lambda_{1}+\lambda_{n}\right) / 2$. If $\sigma<\left(\boldsymbol{\lambda}_{2}+\lambda_{n}\right) / 2$ then largest eigenvalue of $\boldsymbol{A}-\boldsymbol{\sigma}$ is $\boldsymbol{\lambda}_{1}-\sigma$ and second largest is $\boldsymbol{\lambda}_{2}-\sigma$. If $\sigma \geq\left(\boldsymbol{\lambda}_{2}+\boldsymbol{\lambda}_{n}\right) / 2$ then largest eigenvalue of $\boldsymbol{A}-\sigma$
is $\boldsymbol{\lambda}_{n}-\sigma$ and second largest is $\boldsymbol{\lambda}_{\mathbf{2}}-\sigma$. Therefore, setting $\boldsymbol{\mu}=\left(\boldsymbol{\lambda}_{\mathbf{2}}+\boldsymbol{\lambda}_{n}\right) / \mathbf{2}$, we get

$$
\phi(\sigma)=\left\{\begin{array}{l}
\frac{\left|\lambda_{2}-\sigma\right|}{\left|\lambda_{1}-\sigma\right|}=\frac{\lambda_{2}-\sigma}{\lambda_{1}-\sigma} \quad \text { if } \sigma<\mu \\
\frac{\left|\lambda_{n}-\sigma\right|}{\left|\lambda_{1}-\sigma\right|}=\frac{\sigma-\lambda_{n}}{\lambda_{1}-\sigma} \quad \text { if } \sigma>\mu
\end{array}\right.
$$

Note that for $\sigma<\mu$ we have $\phi(\sigma)=1-\left(\lambda_{1}-\lambda_{2}\right) /\left(\lambda_{1}-\sigma\right)$ which is a decreasing function while when $\sigma>\mu$ we have $\phi(\sigma)=-1+\left(\lambda_{1}-\lambda_{n}\right) /\left(\lambda_{1}-\sigma\right)$ which is an increasing function. The min. is reached when these 2 values are equal which leads to the solution $\sigma_{o p t}=\left(\boldsymbol{\lambda}_{n}+\boldsymbol{\lambda}_{2}\right) / 2$ \square

Additional notes.

In discussing Gerschgorin theorem it was stated:
> Refinement: if disks are all disjoint then each of them contains one eigenvalue

Question: Why?

Solution:

Consider the matrix $A(t)=D+t(A-D)$ where D is the diagonal of A. Note $A(0)=$ $D, A(1)=A$. Consider the n disks as t varies from $t=0$ to $t=1$. When $t=0$ each disk contains exactly one eigenvalue. As \boldsymbol{t} increases (in a continuous way) fom 0 to one - each disk will still contain one eigenvalue - by a continuity argument [you cannot have an eigenvalue jump suddently - from one disk to another- this would be a dicontinuous behavior]. The argument can be adapted to the case where two disks touch each other at one point (only): it is now possible to have two eigenvalues at the intersection of the disks - coming from each of the t2o disks.

