\& 2 Use the min-max theorem to show that $\|A\|_{2}=\sigma_{1}(\boldsymbol{A})$ - the largest singular value of $\boldsymbol{A}$.
Solution: This comes from the fact that:

$$
\begin{aligned}
\|A\|_{2}^{2} & =\max _{x \neq 0} \frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}} \\
& =\max _{x \neq 0} \frac{(A x, A x)}{(x, x)} \\
& =\max _{x \neq 0} \frac{\left(A^{T} A x, A\right)}{(x, x)} \\
& =\lambda_{\max }\left(A^{T} A\right) \\
& =\sigma_{1}^{2}
\end{aligned}
$$

\& 03 Suppose that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$ where $\boldsymbol{L}$ is unit lower triangular, and $\boldsymbol{D}$ diagonal. How many negative eigenvalues does $\boldsymbol{A}$ have?

Solution: It has as many negative eigenvalues as there are negative entries in $D$
$\square_{0}$ Assume that $\boldsymbol{A}$ is tridiagonal. How many operations are required to determine the number of negative eigenvalues of $\boldsymbol{A}$ ?

Solution: The rough answer is $\boldsymbol{O}(\boldsymbol{n})$ - because an LU (and therefore LDLT) factorization costs $O(n)$. Based on doing the $L U$ factorization of a triagonal matrix, a more accurate answer is $3 n$ operations. $\square$

D 5 Devise an algorithm based on the inertia theorem to compute the $\boldsymbol{i}$-th eigenvalue of a tridiagonal matrix.

Solution: Here is a matlab script:

```
    function [sigma] = bisect(d, b, i, tol)
%% function [sigma] = bisect(d, b, i, tol)
%% d = diagonal of T
%% b = co-diagonal
%% i = compute i-th eigenvalue
%% tol = tolerance used for stopping
    b(1) = 0;
    n = length(d);
%%-------------------- guershgorin
```

```
tmin = d(n) - abs(b(n));
tmax = d(n) + abs(b(n));
for j=1:n-1
    rho = abs(b(j)) + abs(b(j+1));
    tmin = min(tmin, d(j)-rho);
    tmax = max(tmax, d(j)+rho);
end
tol = tol*(tmax-tmin);
for iter=1:100
    sigma = 0.5*(tmin+tmax);
    count = sturm(d, b, sigma);
    if (count >= i)
        tmin = sigma;
    else
            tmax = sigma;
        end
    if (tmax - tmin) < tol
        break
    end
end
```

\& 6 What is the inertia of the matrix

$$
\left(\begin{array}{cc}
I & F \\
F^{T} & 0
\end{array}\right)
$$

where $\boldsymbol{F}$ is $\boldsymbol{m} \times \boldsymbol{n}$, with $\boldsymbol{n}<\boldsymbol{m}$, and of full rank?
[Hint: use a block LU factorization]

Solution: We start with

$$
\begin{aligned}
\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & 0
\end{array}\right) & =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
0 & \boldsymbol{I}
\end{array}\right)^{2} \\
& =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)^{T}
\end{aligned}
$$

This is of the form $\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{T}$ where $\boldsymbol{X}$ is invertible.. Therefore the inertia is the same as that of the block diagonal matrix which is: $\boldsymbol{m}$ positive eigenvalues (block $\boldsymbol{I}$ ) and $\boldsymbol{n}$ negative eigenvalues since $-\boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{F}$ is $\boldsymbol{n} \times n$ and negative definite.

Let $\left\|\boldsymbol{A}_{O}\right\|_{I}=\max _{i \neq j}\left|a_{i j}\right|$. Show that

$$
\left\|A_{O}\right\|_{F} \leq \sqrt{n(n-1)}\left\|A_{O}\right\|_{I}
$$

Solution: This is straightforward:

$$
\left\|A_{O}\right\|_{F}^{2}=\sum_{i \neq j}\left|a_{i j}\right|^{2} \leq n(n-1) \max _{i \neq j}\left|a_{i j}\right|^{2}=n(n-1)\left\|A_{O}\right\|_{I}^{2}
$$

$\square$
$\&_{0} 8$ Use this to show convergence in the case when largest entry is zeroed at each step.
Solution: If we call $\boldsymbol{B}_{k}$ the matrix $\boldsymbol{A}_{O}$ after each rotation then we have according to result in the previous page and using the previous exercise:

$$
\begin{aligned}
\left\|B_{k+1}\right\|_{F}^{2} & =\left\|B_{k}\right\|_{F}^{2}-2 a_{p q}^{2} \\
& =\left\|B_{k}\right\|_{F}^{2}-2\left\|B_{k}\right\|_{I}^{2} \\
& \leq\left\|B_{k}\right\|_{F}^{2}-\frac{2}{n(n+1)}\left\|B_{k}\right\|_{F}^{2} \\
& =\left[1-\frac{2}{n(n+1)}\right]\left\|B_{k}\right\|_{F}^{2}
\end{aligned}
$$

which shows that the norm will be decreasing by factor less than a constant that is less than one therefore it converges to zero. $\square$

