
CSci 5304, F’20 Solution keys to some exercises from: Set 2

-1 Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result (Ax, y) = (x,AHy):

‖Qx‖2
2 = (Qx,Qx) = (x,QHQx) = (x, x) = ‖x‖2

2. �

-3 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when x = λy,

i.e., when they are colinear.�

-4 Expand (x+ y, x+ y) – What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the

Cauchy-Schwarz inequality. �.
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• Proof of the Hölder inequality.

|(x, y)| ≤ ‖x‖p‖y‖q , with 1
p

+ 1
q

= 1

Proof: For any zi, vi all nonnegative we have, setting ζ =
∑
zi,(∑

(zi/ζ)vi

)p
≤
∑

(zi/ζ)v
p
i (convexity)→(∑

zivi

)p
≤
[∑

(zi/ζ)v
p
i

]
ζp =

[∑
ziv

p
i

]
ζp−1 →∑

zivi ≤
[∑

ziv
p
i

]1/p

ζ(p−1)/p∑
zivi ≤

[∑
ziv

p
i

]1/p [∑
zi

]1/q

Now take zi = xqi , and vi = yi ∗ x1−q
i . Then zivi = xiyi and:

ziv
p
i = xqi ∗ (yi ∗ x1−q

i )p = ypi ∗ x
q+p−pq
i = ypi ∗ x0

i == ypi �

-5 Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖+ ‖y‖ → ‖x‖ − ‖y‖ ≤ ‖x− y‖
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Next exchange the roles of x and y:

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖

The two inequalities ‖x‖−‖y‖ ≤ ‖x− y‖ and ‖y‖−‖x‖ ≤ ‖x− y‖ yield the result since

they imply that

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖

-6 Consider the metric d(x, y) = maxi|xi−yi|. Show that any norm in Rn is a continuous

function with respect to this metric.

Solution: We need to show that we can make ‖y‖ arbitrarily close to ‖x‖ by making y ‘close’

enough to x, where ‘close’ is measured in terms of the infinity norm distance d(x, y) = ‖x−y‖∞.

Define u = x− y and write u in the canonical basis as u =
∑n

i=1 δiei. Then:

‖u‖ = ‖
n∑
i=1

δiei‖ ≤
n∑
i=1

|δi| ‖ei‖ ≤ max |δi|
n∑
i=1

‖ei‖
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Setting M =
∑n

i=1 ‖ei‖ we get ‖u‖ ≤M max |δi| = M‖x− y‖∞

Let ε be given and take x, y such that ‖x − y‖∞ ≤ ε
M

. Then, by using the second triangle

inequality we obtain:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ ≤M max δi ≤M
ε

M
= ε.

This means that we can make ‖y‖ arbitrarily close to ‖x‖ by making y close enough to x in the

sense of the defined metric. Therefore ‖.‖ is continuous.

-7 In Rn (or Cn) all norms are equivalent.

Solution: We will do it for φ1 = ‖.‖ some norm, and φ2 = ‖.‖∞ [and one can see that all

other cases will follow from this one].

1. Need to show that for some α we have ‖x‖ ≤ α‖x‖∞. Express x in the canonical basis of
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Rn as x =
∑
xiei [look up canonical basis ei from your csci2033 class.] Then

‖x‖ = ‖
∑

xiei‖ ≤
∑
|xi|‖ei‖ ≤ max |xi|

∑
‖ei‖ = ‖x‖∞α

where α =
∑
‖ei‖.

2. We need to show that there is a β such that ‖x‖ ≥ β‖x‖∞. Assume x 6= 0 and consider

u = x/‖x‖∞. Note that u has infinity norm equal to one. Therefore it belongs to the closed and

bounded set S∞ = {v|‖v‖∞ = 1}. Since norms are continuous (seen earlier), the minimum of

the norm ‖u‖ for all u′s in S∞ is reached, i.e., there is a u0 ∈ S∞ such that

min
u∈ S∞

‖u‖ = ‖u0‖.

Let us call β this minimum value, i.e., ‖u0‖ = β. Note in passing that β cannot be equal to

zero otherwise u0 = 0 which would contradict the fact that u0 belongs to S∞ [all vectors in S∞

have infinity norm equal to one.] The result follows because u = x/‖x‖∞, and so, remembering

that u = x/‖x‖∞, we obtain∥∥∥∥ x

‖x‖∞

∥∥∥∥ ≥ β → ‖x‖ ≥ β‖x‖∞
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This completes the proof

-8 Show that for any x: 1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1

Solution: For the right inequality, it is easy to see that ‖x‖2 ≤ ‖x‖1 because
∑

i x
2
i ≤

[
∑

i |xi|]
2

For the left inequality, we rely on Cauchy-Schwarz. If we call 1 the vector of all ones, then:

‖x‖1 =
∑
i

|xi|.1 ≤ ‖x‖2‖One‖2 =
√
n‖x‖2‖

-14 Show that ρ(A) ≤ ‖A‖ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u. Then

Au = λu→
‖Au‖
‖u‖

= |λ| = ρ(A)
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This implies that

ρ(A) ≤ max
x 6=0

‖Ax‖
‖x‖

= ‖A‖

-15 Given a function f(t) (e.g., et) how would you define f(A)? [You may limit yourself to

the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

f(A) = f(0)I +
f ′(0)

1!
A+

f ′′(0)

2!
A2 · · ·

f (k)(0)

k!
Ak + · · ·

However, this will require a justification: Will this expression ‘converge’ as the number of terms

goes to infinity? This is where norms are useful.

In the simplest case where A is diagonalizable you can write A = XDX−1 and then consider

the k-term part of the Taylor series expression above:
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Fk = f(0)I +
f ′(0)

1!
A+

f ′′(0)

2!
A2 + · · ·+

f (k)(0)

k!
Ak

= X

[
f(0)I +

f ′(0)

1!
D +

f ′′(0)

2!
D2 + · · ·+

f (k)(0)

k!
Dk

]
X−1

≡ XDkX
−1

where Dk is the matrix inside the brackets in line 2 of above equations. The i− th diagonal entry

of Dk is of the form

fk(λi) = f(0) +
f ′(0)

1!
λi +

f ′′(0)

2!
λ2
i + · · ·+

f (k)(0)

k!
λki ,

which is just the k-term part of the Taylor series expansion of f(λi). Each of these will converge

to f(λi). Now it is easy to complete the argument. If we call Df the diagonal matrix whose ith

diagonal entry is f(λi) and fA the matrix defined by

fA = XDfX
−1,
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then clearly

‖Fk − FA‖2 = ‖X(Dk −DA)X−1‖2 ≤ ‖X‖2‖X−1‖2‖Dk −DA‖2

≤ ‖X‖2‖X−1‖2 max
i
|fk(λi)− f(λi)|

which converges to zero as k goes to infinity.

-17 The eigenvalues of AHA and AAH are real nonnegative.

Solution: Let us show it for AHA [the other case is similar] If λ, u is an eigenpair of AHA then

(AHA)u = λu. Take inner products with u on both sides. Then:

λ(u, u) = ((AHA)u, u) = (Au,Au) = ‖Au‖2

Therefore, λ = ‖Au‖2/‖u‖2 which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result

(Ax, y) = (x,AHy). 2) The singular values of A are the square roots of the eigenvalues of

AHA ifm ≥ n or those of the eigenvalues ofAAH ifm < n. So there are always min(m,n)

singular values. This is really just a preliminary definition as we need to refer to singular values
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often – but we will see singular values and the singular value decomposition in great detail later.]

-18 Prove that when A = uvT then ‖A‖2 = ‖u‖2‖v‖2.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form A = uvT

where both u and v are in Rn. From Ax = λx we get:

uvTx = λx→ (vTx)u = λx

Notice that we did this because vTx is a scalar. We have 2 cases.

Case 1: vTx = 0. In this case it is clear that the equation Ax = λx is satisfied with λ = 0. So

any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue λ = 0.

(It can be shown that the eigenvalue 0 is of multiplicity n− 1).

Case 2: vTx 6= 0. In this case it is clear that the equation Ax = λx is satisfied with λ = vTu

and x = u. So u is an eigenvector of A associated with the eigenvalue vTx.

In summary the matrix uvT has only two eigenvalues: 0, and vTu.
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Going back to the original question, we consider now A = uvT and we are interested in the

2-norm of A. We have

‖A‖2
2 = ρ(ATA) = ρ(vuTuvT ) = ‖u‖2

2ρ(vvT ) = ‖u‖2
2‖v‖

2
2.

The last relation comes from what was done above to determine the eigenvalues of vvT . So in the

end, ‖A‖2 = ‖u‖2‖v‖2.

-19 In this case what is ‖A‖F ?

Solution: Only the last part of the above answer changes ( ρ is replaced by Tr ) and you will find

that actually the Frobenius norm of uvT is again equal to ‖u‖2‖v‖2.

Proof of Cauchy-Schwarz inequality:

|(x, y)|2 ≤ (x, x) (y, y). (1)
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Proof: We begin by expanding (x− λy, x− λy) using properties of inner products:

(x− λy, x− λy) = (x, x)− λ̄(x, y)− λ(y, x) + |λ|2(y, y).

If y = 0 then the inequality is trivially satisfied. Assume that y 6= 0 and take λ = (x, y)/(y, y).

Then, from the above equality, (x− λy, x− λy) ≥ 0 shows that

0 ≤ (x− λy, x− λy) = (x, x)− 2
|(x, y)|2

(y, y)
+
|(x, y)|2

(y, y)

= (x, x)−
|(x, y)|2

(y, y)
,

which yields the result.
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