CSci 5304, F’20 Solution keys to some exercises from: Set 2

#v1| Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result (Ax,y) = (x, AHy):

1Qz||? = (Qz, Qx) = (z, QP Qx) = (z,z) = ||z|3. O

#13| When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when x = Ay,

i.e., when they are colinear.L]

# 4| Expand (x + y,x + y) — What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the

Cauchy-Schwarz inequality. L.
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® Proof of the Holder inequality.

@, 9)] < ll@lpllylly s with 5 +2 =1

Proof: For any z;,v; all nonnegative we have, setting { = ) _ z;,
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Now take z; = x, and v; = y; * «;~ ?. Then z;v; = x;y; and:
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#05| Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

[zl = Iz —y) +yll < llz —yll + [yl = llzll = llyll < llz -yl
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Next exchange the roles of x and y:
[yl = llzll < lly — z|| = [ -yl

The two inequalities ||z || — ||ly|| < ||z —yl|| and ||y|| — ||z]| < ||z — y|| yield the result since
they imply that
—llz =yl < llzll = llyll < llz -yl

6| Consider the metric d(x,y) = max;|x; — y;|. Show that any norm in R™ is a continuous

function with respect to this metric.

Solution: We need to show that we can make ||y|| arbitrarily close to ||x|| by making y ‘close’
enough to x, where ‘close’ is measured in terms of the infinity norm distance d(x, y) = ||z —¥Y||0o-

Define w = & — y and write w in the canonical basis asw = ) ., d;e;. Then:

lull = 11 dieill <> 18l lleill < max || ) [les]
=1 =1 =1
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Setting M = Y"1, leil| we get  [[lull < M max [6,] = Ml — yll

Let € be given and take x,y such that || — y|lcc < 57. Then, by using the second triangle

inequality we obtain:
€
Hizll =iyl | < llz — yll < Mmaxd; < M = e.

This means that we can make ||y|| arbitrarily close to ||x|| by making y close enough to x in the

sense of the defined metric. Therefore ||.|| is continuous.

“7[ In R™ (or C™) all norms are equivalent.

Solution: We will do it for 1 = ||.|| some norm, and ¢2 = ||.||cc [and one can see that all

other cases will follow from this one].

1. Need to show that for some ¢ we have ||x|| < a||x||co. Express  in the canonical basis of
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R™ as x = ) _ x;e; [look up canonical basis e; from your csci2033 class.] Then

lell =11 Y ziedll <) lzilllesl] < max |z ) el = [lzllwer

where v = ) || e;]|.

2. We need to show that there is a 3 such that ||x|| > B||@||co. Assume x # 0 and consider
u = x/||x||co. Note that u has infinity norm equal to one. Therefore it belongs to the closed and
bounded set S = {v|||v||lcc = 1}. Since norms are continuous (seen earlier), the minimum of

the norm ||u|| for all u's in S is reached, i.e., there is a uy € S such that

Jnin luf] = fuoll
Let us call 3 this minimum value, i.e., ||ug|| = (3. Note in passing that (3 cannot be equal to

zero otherwise ug = 0 which would contradict the fact that ug belongs to S [all vectors in S
have infinity norm equal to one.| The result follows because u = x /||« ||, and so, remembering

that u = x/||x||s0, we obtain

H o H > 8 ||l > Bzl
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This completes the proof

# 8| Show that for any x: \%leh < x|z < ||=||1

Solution: For the right inequality, it is easy to see that ||z||2 < ||x||1 because Y, x7 <
2
2 lzil]

For the left inequality, we rely on Cauchy-Schwarz. If we call 1 the vector of all ones, then:

lzlly = ) lzil-1 < [lz]l2[|Onellz = v/nllz|l||
7

#114| Show that p(A) < ||A|| for any matrix norm.

Solution: Let X be the largest (in modulus) eigenvalue of A with associated eigenvector w. Then

| Aul| _
ful

Au = du — IA| = p(A)
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This implies that

p(A) < max |Az]
— 20 |z

= |l All

#115| Given a function f(t) (e.g., €) how would you define f(A)? [You may limit yourself to

the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

O, IO 4 £ (0)

k
21 BT

f(A) =

However, this will require a justification: Will this expression ‘converge’ as the number of terms

goes to infinity? This is where norms are useful.

In the simplest case where A is diagonalizable you can write A = X DX ™! and then consider

the k-term part of the Taylor series expression above:
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where Dy, is the matrix inside the brackets in line 2 of above equations. The 1 — th diagonal entry

of Dy, is of the form

" (k:)
f() f() 2y fk'()f’

fr(Xi) = £(0)

which is just the k-term part of the Taylor series expansion of f(\;). Each of these will converge
to f(Ai). Now it is easy to complete the argument. If we call D¢ the diagonal matrix whose ith

diagonal entry is f(\;) and fa the matrix defined by

fa=XD;X ',
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then clearly

|Fi — Fallz = | X(Dr, — Da)X |2 < [| X]|2l| X |2]| Dk — Dall2
< 1 X2l X2 max | f(Xs) — F()]

which converges to zero as k goes to infinity.

#117| The eigenvalues of AH A and AAH are real nonnegative.

Solution: Let us show it for AH A [the other case is similar] If X, u is an eigenpair of AH A then

(A® A)u = Au. Take inner products with w on both sides. Then:

Au,u) = (A7 A)u,u) = (Au, Au) = || Au|?

Therefore, A\ = || Aw||?/||u||? which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result
(Ax,y) = (x, AHy). 2) The singular values of A are the square roots of the eigenvalues of
AH A ifm > n or those of the eigenvalues of AAH ifm < m. So there are always min(m, n)

singular values. This is really just a preliminary definition as we need to refer to singular values
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often — but we will see singular values and the singular value decomposition in great detail later.|

#118| Prove that when A = uv™ then || A||2 = ||ul|2]|v||2.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form A = uv’

where both w and v are in R™. From Ax = Ax we get:

v’z = Axr — (viz)u = Az

T

Notice that we did this because v* x is a scalar. We have 2 cases.

Case 1: vTx = 0. In this case it is clear that the equation Ax = \x is satisfied with A\ = 0. So
any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue A = 0.

(It can be shown that the eigenvalue 0 is of multiplicity n — 1).

Case 2: vTx # 0. In this case it is clear that the equation Ax = Ax is satisfied with A = vTu

and © = w. So w is an eigenvector of A associated with the eigenvalue vTx.

In summary the matrix uv! has only two eigenvalues: 0, and v1u.
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Going back to the original question, we consider now A = wuv® and we are interested in the

2-norm of A. We have
A3 = p(ATA) = p(vu'uv”) = |Jullzp(vo’) = |lu|l5]v]|3.

The last relation comes from what was done above to determine the eigenvalues of vvl. So in the

end, [|Allz = |lufl2[[v]]2-

#19| In this case what is || A||F?

Solution: Only the last part of the above answer changes ( p is replaced by Tr) and you will find

that actually the Frobenius norm of uv?® is again equal to ||ul|2||v]|2.

Proof of Cauchy-Schwarz inequality:

|(:13,y)|2 < (z,z) (y,y). (1)



Proof: We begin by expanding (x — Ay, x — A\y) using properties of inner products:

(w — AY, & — Ay) — (waw) - S‘(wa y) — A(yaw) + |>\|2(yay)'

Ify = O then the inequality is trivially satisfied. Assume thaty # 0 and take A = (z,vy)/(y,y).
Then, from the above equality, (x — Ay, x — Ay) > 0 shows that

(=, ) | (=, y)]*

0< (z—Ay,z —Ay) = (z,z) — 2 (¥, 9) i (¥, 9)
= (x w)—M
’ (v, )

which yields the result.
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