Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result \((Ax, y) = (x, A^H y)\):

\[
\|Qx\|^2 = (Qx, Qx) = (x, Q^H Qx) = (x, x) = \|x\|^2.
\]

When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when \(x = \lambda y\), i.e., when they are colinear.

Expand \((x + y, x + y)\) – What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the Cauchy-Schwarz inequality.
• Proof of the Hölder inequality.

\[|(x, y)| \leq \|x\|_p \|y\|_q \text{, with } \frac{1}{p} + \frac{1}{q} = 1 \]

Proof: For any \(z_i, v_i\) all nonnegative we have, setting \(\zeta = \sum z_i\),

\[
\left(\sum \frac{z_i}{\zeta} v_i \right)^p \leq \sum \left(\frac{z_i}{\zeta} v_i^p \right) \text{ (convexity)} \rightarrow \\
\left(\sum z_i v_i \right)^p \leq \left[\sum \left(\frac{z_i}{\zeta} v_i^p \right) \right] \zeta = \left[\sum z_i v_i^p \right] \zeta^{p-1} \rightarrow \\
\sum z_i v_i \leq \left[\sum z_i v_i^p \right]^{1/p} \zeta^{(p-1)/p} \\
\sum z_i v_i \leq \left[\sum z_i v_i^p \right]^{1/p} \left[\sum z_i \right]^{1/q}
\]

Now take \(z_i = x_i^q\), and \(v_i = y_i \ast x_i^{1-q}\). Then \(z_i v_i = x_i y_i\) and:

\[
z_i v_i^p = x_i^q \ast (y_i \ast x_i^{1-q})^p = y_i^p \ast x_i^{q+p-pq} = y_i^p \ast x_i^0 = y_i^p \]

\(\Box\)

\[\text{\textsf{2.0.5}}\] Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

\[\|x\| = \|(x - y) + y\| \leq \|x - y\| + \|y\| \rightarrow \|x\| - \|y\| \leq \|x - y\| \]

2-2
Next exchange the roles of x and y:

$$\|y\| - \|x\| \leq \|y - x\| = \|x - y\|$$

The two inequalities $\|x\| - \|y\| \leq \|x - y\|$ and $\|y\| - \|x\| \leq \|x - y\|$ yield the result since they imply that

$$-\|x - y\| \leq \|x\| - \|y\| \leq \|x - y\|$$

\[\square\]

\[\text{6} \] Consider the metric $d(x, y) = \max_i |x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Solution: We need to show that we can make $\|y\|$ arbitrarily close to $\|x\|$ by making y ‘close’ enough to x, where ‘close’ is measured in terms of the infinity norm distance $d(x, y) = \|x - y\|_\infty$. Define $u = x - y$ and write u in the canonical basis as $u = \sum_{i=1}^{n} \delta_i e_i$. Then:

$$\|u\| = \|\sum_{i=1}^{n} \delta_i e_i\| \leq \sum_{i=1}^{n} |\delta_i| \|e_i\| \leq \max |\delta_i| \sum_{i=1}^{n} \|e_i\|$$
Setting \(M = \sum_{i=1}^{n} ||e_i|| \) we get \[\|u\| \leq M \max \delta_i = M \|x - y\|_\infty \]

Let \(\epsilon \) be given and take \(x, y \) such that \(\|x - y\|_\infty \leq \frac{\epsilon}{M} \). Then, by using the second triangle inequality we obtain:

\[
|\|x\| - \|y\| | \leq \|x - y\| \leq M \max \delta_i \leq M \epsilon \leq M = \epsilon.
\]

This means that we can make \(\|y\| \) arbitrarily close to \(\|x\| \) by making \(y \) close enough to \(x \) in the sense of the defined metric. Therefore \(\|\cdot\| \) is continuous. \(\square \)

\textbf{7} In \(\mathbb{R}^n \) (or \(\mathbb{C}^n \)) all norms are equivalent.

Solution: We will do it for \(\phi_1 = \|\cdot\| \) some norm, and \(\phi_2 = \|\cdot\|_\infty \) [and one can see that all other cases will follow from this one].

1. Need to show that for some \(\alpha \) we have \(\|x\| \leq \alpha \|x\|_\infty \). Express \(x \) in the canonical basis of
\(\mathbb{R}^n\) as \(x = \sum x_i e_i\) [look up canonical basis \(e_i\) from your csci2033 class.] Then
\[
\|x\| = \|\sum x_i e_i\| \leq \sum |x_i| \|e_i\| \leq \max |x_i| \sum \|e_i\| = \|x\|_\infty \alpha
\]
where \(\alpha = \sum \|e_i\|\).

2. We need to show that there is a \(\beta\) such that \(\|x\| \geq \beta \|x\|_\infty\). Assume \(x \neq 0\) and consider \(u = x/\|x\|_\infty\). Note that \(u\) has infinity norm equal to one. Therefore it belongs to the closed and bounded set \(S_\infty = \{v|\|v\|_\infty = 1\}\). Since norms are continuous (seen earlier), the minimum of the norm \(\|u\|\) for all \(u\)'s in \(S_\infty\) is reached, i.e., there is a \(u_0 \in S_\infty\) such that
\[
\min_{u \in S_\infty} \|u\| = \|u_0\|.
\]
Let us call \(\beta\) this minimum value, i.e., \(\|u_0\| = \beta\). Note in passing that \(\beta\) cannot be equal to zero otherwise \(u_0 = 0\) which would contradict the fact that \(u_0\) belongs to \(S_\infty\) [all vectors in \(S_\infty\) have infinity norm equal to one.] The result follows because \(u = x/\|x\|_\infty\), and so, remembering that \(u = x/\|x\|_\infty\), we obtain
\[
\left\|\frac{x}{\|x\|_\infty}\right\| \geq \beta \rightarrow \|x\| \geq \beta \|x\|_\infty
\]
This completes the proof

Show that for any x:

$$\frac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2 \leq \|x\|_1$$

Solution: For the right inequality, it is easy to see that $\|x\|_2 \leq \|x\|_1$ because $\sum_i x_i^2 \leq (\sum_i |x_i|)^2$

For the left inequality, we rely on Cauchy-Schwarz. If we call $\mathbf{1}$ the vector of all ones, then:

$$\|x\|_1 = \sum_i |x_i| \cdot \mathbf{1} \leq \|x\|_2 \|\mathbf{1}\|_2 = \sqrt{n}\|x\|_2$$

Show that $\rho(A) \leq \|A\|$ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u. Then

$$Au = \lambda u \rightarrow \frac{\|Au\|}{\|u\|} = |\lambda| = \rho(A)$$
This implies that

\[\rho(A) \leq \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \|A\| \]

\[\square \]

\[\square15 \] Given a function \(f(t) \) (e.g., \(e^t \)) how would you define \(f(A) \)? [You may limit yourself to the case when \(A \) is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion.

\[
 f(A) = f(0)I + \frac{f'(0)}{1!}A + \frac{f''(0)}{2!}A^2 \cdots \frac{f^{(k)}(0)}{k!}A^k + \cdots
\]

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful.

In the simplest case where \(A \) is diagonalizable you can write \(A = XDX^{-1} \) and then consider the \(k \)-term part of the Taylor series expression above:
\[F_k = f(0)I + \frac{f'(0)}{1!}A + \frac{f''(0)}{2!}A^2 + \cdots + \frac{f^{(k)}(0)}{k!}A^k \]

\[= X\left[f(0)I + \frac{f'(0)}{1!}D + \frac{f''(0)}{2!}D^2 + \cdots + \frac{f^{(k)}(0)}{k!}D^k\right]X^{-1} \]

\[\equiv XD_kX^{-1} \]

where \(D_k \) is the matrix inside the brackets in line 2 of above equations. The \(i \)-th diagonal entry of \(D_k \) is of the form

\[f_k(\lambda_i) = f(0) + \frac{f'(0)}{1!}\lambda_i + \frac{f''(0)}{2!}\lambda_i^2 + \cdots + \frac{f^{(k)}(0)}{k!}\lambda_i^k, \]

which is just the \(k \)-term part of the Taylor series expansion of \(f(\lambda_i) \). Each of these will converge to \(f(\lambda_i) \). Now it is easy to complete the argument. If we call \(D_f \) the diagonal matrix whose \(i \)th diagonal entry is \(f(\lambda_i) \) and \(f_A \) the matrix defined by

\[f_A = XD_fX^{-1}, \]
then clearly

\[\|F_k - F_A\|_2 = \|X(D_k - D_A)X^{-1}\|_2 \leq \|X\|_2\|X^{-1}\|_2\|D_k - D_A\|_2 \]
\[\leq \|X\|_2\|X^{-1}\|_2 \max_i |f_k(\lambda_i) - f(\lambda_i)| \]

which converges to zero as \(k \) goes to infinity. □

\[\] 17 The eigenvalues of \(A^H A \) and \(AA^H \) are real nonnegative.

Solution: Let us show it for \(A^H A \) [the other case is similar] If \(\lambda, u \) is an eigenpair of \(A^H A \) then \((A^H A)u = \lambda u\). Take inner products with \(u \) on both sides. Then:

\[\lambda(u, u) = ((A^H A)u, u) = (Au, Au) = \|Au\|^2 \]

Therefore, \(\lambda = \|Au\|^2/\|u\|^2 \) which is a real nonnegative number. □

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result \((Ax, y) = (x, A^H y)\). 2) The singular values of \(A \) are the square roots of the eigenvalues of \(A^H A \) if \(m \geq n \) or those of the eigenvalues of \(AA^H \) if \(m < n \). So there are always \(\min(m, n) \) singular values. This is really just a preliminary definition as we need to refer to singular values]
Prove that when $A = uv^T$ then $\|A\|_2 = \|u\|_2\|v\|_2$.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form $A = uv^T$ where both u and v are in \mathbb{R}^n. From $Ax = \lambda x$ we get:

$$uv^T x = \lambda x \rightarrow (v^T x)u = \lambda x$$

Notice that we did this because $v^T x$ is a scalar. We have 2 cases.

Case 1: $v^T x = 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = 0$. So any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue $\lambda = 0$. (It can be shown that the eigenvalue 0 is of multiplicity $n - 1$).

Case 2: $v^T x \neq 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = v^T u$ and $x = u$. So u is an eigenvector of A associated with the eigenvalue $v^T x$.

In summary the matrix uv^T has only two eigenvalues: 0, and $v^T u$.

...
Going back to the original question, we consider now $A = uv^T$ and we are interested in the 2-norm of A. We have

$$\|A\|_2^2 = \rho(A^TA) = \rho(vu^Tuv^T) = \|u\|_2^2 \rho(vv^T) = \|u\|_2^2 \|v\|_2^2.$$

The last relation comes from what was done above to determine the eigenvalues of vv^T. So in the end, $\|A\|_2 = \|u\|_2 \|v\|_2$. □

In this case what is $\|A\|_F$?

Solution: Only the last part of the above answer changes (ρ is replaced by Tr) and you will find that actually the Frobenius norm of uv^T is again equal to $\|u\|_2 \|v\|_2$. □

Proof of Cauchy-Schwarz inequality:

$$(x, y)^2 \leq (x, x) (y, y). \quad (1)$$
Proof: We begin by expanding \((x - \lambda y, x - \lambda y)\) using properties of inner products:

\[(x - \lambda y, x - \lambda y) = (x, x) - \bar{\lambda}(x, y) - \lambda(y, x) + |\lambda|^2(y, y).\]

If \(y = 0\) then the inequality is trivially satisfied. Assume that \(y \neq 0\) and take \(\lambda = (x, y)/(y, y)\). Then, from the above equality, \((x - \lambda y, x - \lambda y) \geq 0\) shows that

\[
0 \leq (x - \lambda y, x - \lambda y) = (x, x) - 2\frac{|(x, y)|^2}{(y, y)} + \frac{|(x, y)|^2}{(y, y)}
= (x, x) - \frac{|(x, y)|^2}{(y, y)},
\]

which yields the result. \(\square\)