En 1 Exact solution of system

$$
\left(\begin{array}{ccc}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
8
\end{array}\right)
$$

Solution: You will find $x=[1,3,-2]^{T}$.

Sustify the column version of Back-subsitution algorithm.

Solution: The system $\boldsymbol{A x}=\boldsymbol{b}$ can be written in column form as follows:

$$
x_{1} a_{:, 1}+x_{2} a_{:, 2}+\cdots+x_{n} a_{:, n}=b
$$

In first step we compute $\boldsymbol{x}_{\boldsymbol{n}}=\boldsymbol{b}_{n} / \boldsymbol{a}_{\boldsymbol{n}, \boldsymbol{n}}$. Now move last term in left-hand side of above system
to the right:

$$
x_{1} a_{:, 1}+x_{2} a_{:, 2}+\cdots+x_{n-1} a_{:, n-1}=b-x_{n} a_{:, n} \equiv b^{(1)}
$$

This is a new system of n equations that has $(\boldsymbol{n}-1)$ unknowns and the right-hand-side $\boldsymbol{b}^{(1)}$. The last equation of this system is of the form $\mathbf{0}=0$ and can therefore be ignored. Thus, we end up wih a system of size $(n-1) \times(n-1)$ that is still upper triangular and we can repeat the above argument recursively. \square

En3 Exact operation count for GE.

Solution:

$$
\begin{aligned}
T & =\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}(2(n-k)+3) \\
& =\sum_{k=1}^{n-1}(2(n-k)+3)(n-k)
\end{aligned}
$$

$$
\begin{aligned}
T & =2 \sum_{k=1}^{n-1}(n-k)^{2}+3 \sum_{k=1}^{n-1}(n-k) \\
& =2 \sum_{j=1}^{n-1} j^{2}+3 \sum_{j=1}^{n-1} j
\end{aligned}
$$

In the last step we made a change of variables $\boldsymbol{j}=\boldsymbol{n}-\boldsymbol{k}$. Now we know that $\sum_{k=1}^{n} \boldsymbol{k}^{2}=$ $n(n+1)(2 n+1) / 6$ and $\sum_{k=1}^{n} k=n(n+1) / 2$ and so

$$
\begin{align*}
T & =2 \frac{(n-1)(n)(2 n-1)}{6}+3 \times \frac{n(n-1)}{2} \\
& =\cdots \\
& =n(n-1)\left(\frac{2 n}{3}+\frac{7}{6}\right) \tag{1}
\end{align*}
$$

Finally observe the remarkable fact that the final expression (1) is always an integer (it has to be) no matter what (integer) value \boldsymbol{n} takes.
$\leftrightarrow_{4} 4$ Practical use: Show how to use the LU factorization to solve linear systems with the same matrix \boldsymbol{A} and different \boldsymbol{b} 's.

Solution: If we have the $L U$ factorization $A=L U$ available then we can solve the linear system
$\boldsymbol{A x}=\boldsymbol{b}$ by writing it as

$$
L \underbrace{(U x)}_{y}=b
$$

So we solve for $\boldsymbol{y}: \boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$ then once \boldsymbol{y} is computed we solve for $\boldsymbol{x}: \boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$. This involves two triangular solves at the cost of n^{2} each instead of the $O\left(n^{3}\right)$ cost of redoing everything with Gaussian elimination.
-5 $L U$ factorization of the matrix $A=\left(\begin{array}{ccc}2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1\end{array}\right)$?
Solution: You will find

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
1 / 2 & 1 / 3 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
2 & 4 & 4 \\
0 & 3 & 4 \\
0 & 0 & -7 / 3
\end{array}\right)
$$

Determinant of A?

Solution: It is the determinant of \boldsymbol{U} which is $\mathbf{- 1 2}$.
$\omega_{0} 7$ True or false: "Computing the LU factorization of matrix \boldsymbol{A} involves more arithmetic operations than solving a linear system $\boldsymbol{A x}=\boldsymbol{b}$ by Gaussian elimination".

Solution: The number of arithmetic operations is identical. (The LU factorization involves additional memory moves to store the factors - but these are no floating point operations)

Q88 Operation count for Gauss-Jordan. Order of the cost? How does it compare with Gaussian Elimination?

Solution: From the notes:

$$
\begin{aligned}
T & \left.=\sum_{k=1}^{n-1} \sum_{i=1}^{n-1}[2(n-k)+3)\right]=\sum_{k=1}^{n-1}(n-1)[2(n-k)+3] \\
& =(n-1) \sum_{j=1}^{n-1}[2 j+3] \\
& =(n-1)[n(n-1)+3(n-1)] \\
& =(n-1)^{2}(n+3)=(n-1)^{3}+4(n-1)^{2}
\end{aligned}
$$

The bottom line is that the cost is $\approx n^{3}$ which is 50% more expensive than GE. This additional cost is not worth it in spite of the simplicity of the algorithm. For this Gauss-Jordan is seldom used in practice. \square

What is the matrix $\boldsymbol{P A}$ when

$$
P=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{array}\right) ?
$$

Solution: Instead of multiplying you just permute the row: row 1 in new matrix is row 3 of old
matrix, row 2 is row 1 of old matrix, etc.

$$
P A=\left(\begin{array}{cccc}
9 & 0 & -1 & 2 \\
1 & 2 & 3 & 4 \\
-3 & 4 & -5 & 6 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

4 10 In the previous example where
$>A=\left[\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 ; & 5 & 6 & 7 & 8 ; & 9 & -1 & 2 & ; & -3 & 4 & -5 & 6\end{array}\right]$

Matlab gives $\operatorname{det}(A)=-896$. What is $\operatorname{det}(P A) ?$

Solution: It changes sign so $\operatorname{det}(P A)=896$. This is because the permutation $\pi=[3,1,4,2]$ is made of 3 interchanges.

11 Given a banded matrix with upper bandwidth \boldsymbol{q} and lower bandwidth \boldsymbol{p}, what is the operation count (leading term only) for solving the linear system $\boldsymbol{A x}=\boldsymbol{b}$ with Gaussian elimination without
pivoting? What happens when partial pivoting is used? Give the new operation count for the worst case scenario.

Solution: [Note: it is assumed that $\boldsymbol{p} \ll \boldsymbol{n}$ and $\boldsymbol{q} \ll \boldsymbol{n}$ but \boldsymbol{p} and \boldsymbol{q} are not related]. The important observation here is that Gaussian elimination without pivoting for this band matrix will operate on a rectangle: at step \boldsymbol{k} only rows $\boldsymbol{k}+\mathbf{1}$ to $\boldsymbol{k}+\boldsymbol{p}$ are affected and columns $\boldsymbol{k}+\mathbf{1}$ to $\boldsymbol{k}+\boldsymbol{q}$ are affected.

In this rectangle each entry will be modified at the cost of 2 operations $\left(^{*},+\right.$). Total: $2 \boldsymbol{p q}$ for
each step. So Gaussian elimination without pivoting for this band matrix costs approximately $2 \mathbf{n p q}$ flops. Using band backward substitution to obtain the solution \boldsymbol{x} costs $\approx 2 n q$ flops. The total operation count (leading term only): $\approx 2 n p q+2 n q=2 n q(p+1)$. Note that when p is small the cost of susbstitution cannot be ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the resulting matrix will be $\boldsymbol{p}+\boldsymbol{q}$.
In this case, the total operation count (leading term only) becomes: $\approx 2 n p(p+q)(p+1)$. \square

