$ilde{m{\omega}}$ 1 Show that each A_k [A(1:k,1:k) in matlab notation] is SPD.

Solution: Let x be any vector in \mathbb{R}^k and consider the vector y of \mathbb{R}^n obtained by stacking x followed by n-k zeros. Then it can be easily seen that : $(A_kx,x)=(Ay,y)$ and since A is SPD then (Ay,y)>0 and therefore $(A_kx,x)>0$ for any x in \mathbb{R}^k . Hence A_k is SPD.

Solution: This is because the determinant is the product of the eigenvalues which are real positive (see notes).

🔼 If A is SPD then for any n imes k matrix X of rank k, the matrix X^TAX is SPD.

Solution: For any $v \in \mathbb{R}^k$ we have $(X^TAXv,v)=(AXv,Xv)$. In addition, since X is of full rank, then Xv cannot be zero if v is nonzero. Therefore we have (AXv,Xv)>0.

lacksquare Show that if $A^T=A$ and $(Ax,x)=0\ orall x$ then A=0.

Solution: The condition implies that for all x,y we have (A(x+y),x+y)=0. Now expand this as: (Ax,x)+(Ay,y)+2(Ax,y)=0 for all x,y which shows that (Ax,y)=0 $\forall x,y$. This implies that A=0 (e.g. take $x=e_j,y=e_i$)...

lacksquare Show: A nonzero matrix A is indefinite iff $\exists \; x,y: (Ax,x)(Ay,y) < 0$.

Solution:

← Trivial. The matrix cant be PSD or NSD under the conditon

Need to prove: If A is indefinite then there exist such that x,y:(Ax,x)(Ay,y)<0. Assume contrary is true, i.e., $\forall x,y(Ax,x)(Ay,y)\geq 0$. There is at least one x_0 such that (Ax_0,x_0) is nonzero, otherwise A=0 from previous question. Assume $(Ax_0,x_0)>0$. Then $\forall y(Ax_0,x_0)(Ay,y)\geq 0$. which implies $\forall y:(Ay,y)\geq 0$, i.e., A is positive semi-definite. This contradicts the assumption that A is neither positive nor negative semi-defininte \Box

Solution: This is an immediate consequence of the main theorem on existence (Lec. notes. set #5) and Exercise 1 in this set which showed that $\det(A_k)>0$ for $k=1,\cdots,n$.

Example:

$$A = egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

✓ Is A symmetric positive definite?

Solution: Answer is yes because $\det(A_k) > 0$ for k = 1, 2, 3.

Solution: The LU factorizatis is:

$$L = egin{pmatrix} 1 & 0 & 0 \ -1 & 1 & 0 \ 2 & 1/2 & 1 \end{pmatrix} \qquad U = egin{pmatrix} 1 & -2 & 1 \ 0 & 4 & 2 \ 0 & 0 & 4 \end{pmatrix}$$

Therefore $A = LDL^T$ where L is as given above and

$$D = egin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad \Box$$

Solution: From the above LDLT factorization we have $A = GG^T$ with

$$G = egin{pmatrix} 1 & 0 & 0 \ -1 & 2 & 0 \ 2 & 1 & 2 \end{pmatrix}$$

Gradient of $\psi(x)=(Ax,x)$

In practice exercise # 6 it is asked: Let A be symmetric and $\psi(x)=(Ax,x)$. What is the partial derivative $\frac{\partial \psi(x)}{\partial x_k}$? What is the gradient of ψ ?

Solution: First note that

$$\psi(x) = \sum_{i=1}^n x_i \left[\sum_{j=1}^n a_{ij} x_j
ight]$$

and so, using basic rules for derivatives of products:

$$egin{aligned} rac{\partial \psi(x)}{\partial x_k} &= \sum_{i=1}^n rac{\partial x_i}{\partial x_k} \left[\sum_{j=1}^n a_{ij} x_j
ight] + \sum_{i=1}^n x_i \left[rac{\partial x_i}{\partial x_k} \sum_{j=1}^n a_{ij} x_j
ight] \ &= \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n x_i a_{ik} \ &= 2 \sum_{j=1}^n a_{kj} x_j \end{aligned}$$

which is nothing but twice the k-th component of Ax or $rac{\partial \psi(x)}{\partial x_k}=2(Ax)_k$. Therefore the gradient

of ψ is

$$\nabla \psi(x) = 2Ax$$
.

A somewhat simpler solution for finding the gradient is to expand $\psi(x+\delta)=(A(x+\delta),(x+\delta))=...$ and to write that the linear term should be of the form $[\nabla\psi]^T\delta$.