THE SINGULAR VALUE DECOMPOSITION (Cont.)

- The Pseudo-inverse
- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank

\[A = U \Sigma V^T \]

Then the pseudo-inverse of \(A \) is

\[A^\dagger = V_1 \Sigma_1^{-1} U_1^T = \sum_{j=1}^{r} \frac{1}{\sigma_j} v_j u_j^T \]

- The pseudo-inverse of \(A \) is the mapping from a vector \(b \) to the solution \(\min_x \|Ax - b\|_2^2 \) that has minimal norm (to be shown)

- In the full-rank overdetermined case, the normal equations yield

\[x = (A^T A)^{-1} A^T b \]

\[A^\dagger b \]

Answer: From above, must have \(y_1 = \Sigma_1^{-1} U_1^T b \) and \(y_2 = \text{anything (free)} \).

- Recall that \(x = V y \) and write

\[x = [V_1, V_2] \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = V_1 y_1 + V_2 y_2 \]

\[= V_1 \Sigma_1^{-1} U_1^T b + V_2 y_2 \]

\[= A^\dagger b + V_2 y_2 \]

- Note: \(A^\dagger b \in \text{Ran}(A^T) \) and \(V_2 y_2 \in \text{Null}(A) \).

- Therefore: least-squares solutions are of the form \(A^\dagger b + w \) where \(w \in \text{Null}(A) \).

- Smallest norm when \(y_2 = 0 \).
Minimum norm solution to $\min_x \|Ax - b\|_2^2$ satisfies $\Sigma_1 y_1 = U_1^T b$, $y_2 = 0$. It is:
\[x_{LS} = V_1 \Sigma_1^{-1} U_1^T b = A^\dagger b \]

If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of A^\dagger, $A^\dagger A$, AA^\dagger?

Show that $A^\dagger A$ is an orthogonal projector. What are its range and null-space?

Same questions for AA^\dagger.

Least-squares problems and the SVD

The SVD can give much information on solutions of overdetermined and underdetermined linear systems.

Let A be an $m \times n$ matrix and $A = U \Sigma V^T$ its SVD with $r = \text{rank}(A)$, $V = [v_1, \ldots, v_n]$ $U = [u_1, \ldots, u_m]$. Then
\[x_{LS} = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i \]

minimizes $\|b - Ax\|_2$ and has the smallest 2-norm among all possible minimizers. In addition,
\[\rho_{LS} \equiv \|b - Ax_{LS}\|_2 = \|z\|_2 \text{ with } z = [u_{r+1}, \ldots, u_m]^T b \]

Moore-Penrose Inverse

The pseudo-inverse of A is given by
\[A^\dagger = V \left(\begin{array}{cc} \Sigma_1^{-1} & 0 \\ \end{array} \right) U^T = \sum_{i=1}^r \frac{v_i u_i^T}{\sigma_i} \]

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:
\begin{align*}
(1) & \quad AXA = A \\
(2) & \quad XAX = X \\
(3) & \quad (AX)^H = AX \\
(4) & \quad (XA)^H = XA
\end{align*}

In the full-rank overdetermined case, $A^\dagger = (ATA)^{-1}AT$

Least-squares problems and pseudo-inverses

A restatement of the first part of the previous result:

Consider the general linear least-squares problem
\[\min_{x \in S} \|x\|_2, \quad S = \{x \in \mathbb{R}^n \mid \|b - Ax\|_2 \text{ min} \}. \]

This problem always has a unique solution given by
\[x = A^\dagger b \]
Consider the matrix:

\[A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & -2 & 1 \end{pmatrix} \]

- Compute the thin SVD of \(A \).
- Find the matrix \(B \) of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of \(A \)?
- What is the pseudo-inverse of \(B \)?
- Find the vector \(x \) of smallest norm which minimizes \(\| b - Ax \|_2 \) with \(b = (1, 1)^T \).
- Find the vector \(x \) of smallest norm which minimizes \(\| b - Bx \|_2 \) with \(b = (1, 1)^T \).

Ill-conditioned systems and the SVD

- Let \(A \) be \(m \times m \) and \(A = U \Sigma V^T \) its SVD.
- Solution of \(Ax = b \) is \(x = A^{-1}b = \sum_{i=1}^{m} \frac{u_i^T b}{\sigma_i} v_i \).
- When \(A \) is very ill-conditioned, it has many small singular values. The division by these small \(\sigma_i \)'s will amplify any noise in the data. If \(\tilde{b} = b + \epsilon \) then

\[
A^{-1}\tilde{b} = \sum_{i=1}^{m} \frac{u_i^T \tilde{b}}{\sigma_i} v_i + \sum_{i=1}^{m} \frac{u_i^T \epsilon}{\sigma_i} v_i
\]

Remedy: SVD regularization

- Truncate the SVD by only keeping the \(\sigma_i \)'s that are \(\geq \tau \), where \(\tau \) is a threshold.
- Gives the Truncated SVD solution (TSVD solution):

\[x_{TSVD} = \sum_{\sigma_i \geq \tau} \frac{u_i^T b}{\sigma_i} v_i \]

- Many applications [e.g., Image and signal processing,..]

Numerical rank and the SVD

- Assuming the original matrix \(A \) is exactly of rank \(k \) the computed SVD of \(A \) will be the SVD of a nearby matrix \(A + E \) – Can show: \(|\hat{\sigma}_i - \sigma_i| \leq \alpha \sigma_1 u \)
- Result: zero singular values will yield small computed singular values and \(r \) larger sing. values.
- Reverse problem: numerical rank – The \(\epsilon \)-rank of \(A \):

\[r_{\epsilon} = \min \{ \text{rank}(B) : B \in \mathbb{R}^{m \times n}, \| A - B \|_2 \leq \epsilon \} \]

- Show that \(r_{\epsilon} \) equals the number sing. values that are \(> \epsilon \)
- Show: \(r_{\epsilon} \) equals the number of columns of \(A \) that are linearly independent for any perturbation of \(A \) with norm \(\leq \epsilon \).
- Practical problem : How to set \(\epsilon \)?
Pseudo inverses of full-rank matrices

Case 1: \(m > n \)

- Then \(A^\dagger = (A^T A)^{-1} A^T \)
 - Thin SVD is \(A = U_1 \Sigma_1 V_1^T \) and \(V_1, \Sigma_1 \) are \(n \times n \). Then:
 \[
 (A^T A)^{-1} A^T = V_1 \Sigma_1^{-2} V_1^T V_1 \Sigma_1 U_1^T = V_1 \Sigma_1^{-1} U_1^T = A^\dagger
 \]

Example: Pseudo-inverse of \[
\begin{pmatrix}
0 & 1 \\
1 & 2 \\
2 & -1 \\
0 & 1
\end{pmatrix}
\] is?

Case 2: \(m < n \)

- Then \(A^\dagger = A^T (A A^T)^{-1} \)
 - Thin SVD is \(A = U_1 \Sigma_1 V_1^T \). Now \(U_1, \Sigma_1 \) are \(m \times m \) and:
 \[
 A^T (A A^T)^{-1} = V_1 \Sigma_1 U_1^T [U_1 \Sigma_1^{-2} U_1^T]^{-1} = V_1 \Sigma_1 U_1^T U_1 \Sigma_1^{-2} U_1^T = V_1 \Sigma_1^{-2} U_1^T = V_1 \Sigma_1^{-1} U_1^T = A^\dagger
 \]

Example: Pseudo-inverse of \[
\begin{pmatrix}
0 & 1 & 2 & 0 \\
1 & 2 & -1 & 1
\end{pmatrix}
\] is?

- Mnemonic: The pseudo inverse of \(A \) is \(A^T \) completed by the inverse of the smaller of \((A^T A)^{-1} \) or \((A A^T)^{-1} \) where it fits (i.e., left or right)