A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem.

- Regularization methods require the solution of a least-squares linear system \(Ax = b \) approximately in the dominant singular space of \(A \).
- The Latent Semantic Indexing (LSI) method in information retrieval, performs the “query” in the dominant singular space of \(A \).
- Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate \(A \) (or \(A^\top \)) by a lower rank approximation \(A_k \) (using dominant singular space) before solving original problem.

- This approximation captures the main features of the data while getting rid of noise and redundancy.

Note: Common misconception: ‘we need to reduce dimension in order to reduce computational cost’. In reality: using less information often yields better results. This is the problem of overfitting.

- Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

- Given: a collection of documents (columns of a matrix \(A \)) and a query vector \(q \).
- Collection represented by an \(m \times n \) term by document matrix with \(a_{ij} = L_{ij} G_i N_j \).
- Queries (’pseudo-documents’) \(q \) are represented similarly to a column.

Vector Space Model - continued

- Problem: find a column of \(A \) that best matches \(q \).
- Similarity metric: angle between the column and \(q \) - Use cosines:

\[
\frac{|c^T q|}{\|c\|_2 \|q\|_2}
\]

- To rank all documents we need to compute

\[
s = A^T q
\]

- \(s = \) similarity vector.
- Literal matching – not very effective.
Use of the SVD

- Many problems with literal matching: polysemy, synonymy, ...
- Need to extract intrinsic information - or underlying "semantic" information -
- Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$ A = U\Sigma V^T \rightarrow A_k = U_k \Sigma_k V_k^T $$

- U_k: term space, V_k: document space.
- Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$ s_k = A_k^T q = V_k \Sigma_k U_k^T q $$

Issues:
- Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- Problem 3: updates [e.g. google data changes all the time]
- Not practical for very large sets

LSI: an example

<table>
<thead>
<tr>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFANT & TODLER first aid</td>
<td>BABIES & CHILDREN's room for your HOME</td>
<td>CHILD SAFETY at HOME</td>
<td>Your BABY's HEALTH and SAFETY</td>
<td>From INFANT to TODDLER</td>
<td>BABY PROOFING basics</td>
<td>Your GUIDE to easy rust PROOFING</td>
<td>Beanie BABIES collector's GUIDE</td>
</tr>
<tr>
<td>Number of documents: 8</td>
<td>Number of terms: 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Get the answer to the query Child Safety, so

$$ q = [0 1 0 0 0 0 0 1 0] $$

using cosines and then using LSI with $k = 3$.

Raw matrix (before scaling).

$$ A = \begin{bmatrix}
1 & 1 & 1 & 1 & bab \\
1 & 1 & 1 & 1 & chi \\
1 & 1 & 1 & 1 & gui \\
1 & 1 & 1 & 1 & hea \\
1 & 1 & 1 & 1 & hom \\
1 & 1 & 1 & 1 & pro \\
1 & 1 & 1 & 1 & saf \\
1 & 1 & 1 & 1 & tod
\end{bmatrix} $$
Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

- Often main goal of dimension reduction is not to reduce computational cost. Instead:
 - Dimension reduction used to reduce noise and redundancy in data
 - Dimension reduction used to discover patterns (e.g., supervised learning)

- Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

- Given $d \ll m$ find a mapping $\Phi : x \in \mathbb{R}^m \rightarrow y \in \mathbb{R}^d$
- Mapping may be explicit (e.g., $y = V^T x$)
- Or implicit (nonlinear)

Practically: Find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of $X \in \mathbb{R}^{m \times n}$.

- Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example: Digit images (a sample of 30)

A few 2-D 'reductions':

- PCA − digits : 0 −− 4
- LLE − digits : 0 −− 4
- K-PCA − digits : 0 −− 4
- ONPP − digits : 0 −− 4
Projection-based Dimensionality Reduction

- **Given:** a data set \(X = [x_1, x_2, \ldots, x_n] \), and \(d \) the dimension of the desired reduced space \(Y \).
- **Want:** a linear transformation from \(X \) to \(Y \)

\[
\begin{align*}
X & \in \mathbb{R}^{m \times n} \\
V & \in \mathbb{R}^{m \times d} \\
Y & = V^T X
\end{align*}
\]

\(\Rightarrow \) \(m \)-dimens. objects \((x_i)\) ‘flattened’ to \(d \)-dimens. space \((y_i)\)

Problem: Find the best such mapping (optimization) given that the \(y_i \)'s must satisfy certain constraints

11-13 (articles) – SVDapp

Principal Component Analysis (PCA)

- **PCA:** find \(V \) (orthogonal) so that projected data \(Y = V^T X \) has maximum variance

\[
\sum_i \| y_i - \frac{1}{n} \sum_j y_j \|_2^2 = \cdots = \text{Tr} \left[V^T X \bar{X}^T V \right]
\]

Where: \(\bar{X} = [\bar{x}_1, \ldots, \bar{x}_n] \) with \(\bar{x}_i = x_i - \mu \), \(\mu = \text{mean} \).

Solution:

- \(V = \{ \text{dominant eigenvectors} \} \) of the covariance matrix
- i.e., Optimal \(V = \{ \text{Set of left singular vectors of } \bar{X} \} \) associated with \(d \) largest singular values.

11-14 (articles) – SVDapp

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

\[
\begin{array}{cccc|cccc}
\text{given data} & \text{predictions} \\
\hline
\text{movie} & \text{Paul} & \text{Jane} & \text{Ann} & \text{Paul} & \text{Jane} & \text{Ann} \\
\hline
\text{Title-1} & -1 & 3 & -1 & -1.2 & 1.7 & -0.7 \\
\text{Title-2} & 4 & x & 3 & 2.8 & -1.2 & 2.5 \\
\text{Title-3} & -3 & 1 & -4 & -2.7 & 1.0 & -2.5 \\
\text{Title-4} & x & -1 & -1 & -0.5 & -0.3 & -0.6 \\
\text{Title-5} & 3 & -2 & 1 & 1.8 & -1.4 & 1.4 \\
\text{Title-6} & -2 & 3 & x & -1.6 & 1.8 & -1.2 \\
\hline
A & X
\end{array}
\]

- **Minimize** \(\| (X - A)_{\text{mask}} \|_F^2 + \mu \| X \|_* \)
 "minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."