EIGENVALUE PROBLEMS

- Background on eigenvalues/ eigenvectors / decompositions
- Perturbation analysis, condition numbers...
- Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric eigenvalue problem.

Eigenvalue Problems. Introduction

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$Ax = \lambda x$$

 $\lambda \in \mathbb{C}$: eigenvalue

 $x \in \mathbb{C}^n$: eigenvector

Types of Problems:

- ullet Compute a few λ_i 's with smallest or largest real parts;
- ullet Compute all λ_i 's in a certain region of \mathbb{C} ;
- Compute a few of the dominant eigenvalues;
- ullet Compute all λ_i 's.

Eigenvalue Problems. Their origins

- ullet Structural Engineering $[Ku=\lambda Mu]$
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Application of new era: page ranking on the world-wide web.

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A. Notation: $\Lambda(A)$.

- igapsilon λ is an eigenvalue iff the columns of $A-\lambda I$ are linearly dependent.
- \succ ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that

$$w^H(A - \lambda I) = 0$$

- ightharpoonup w is a left eigenvector of A (u= right eigenvector)
- $ightharpoonup \lambda$ is an eigenvalue iff $\det(A-\lambda I)=0$

Basic definitions and properties (cont.)

An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

- \triangleright So there are n eigenvalues (counted with their multiplicities).
- The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

- \triangleright Geometric multiplicity is \leq algebraic multiplicity.
- An eigenvalue is simple if its (algebraic) multiplicity is one.
- It is semi-simple if its geometric and algebraic multiplicities are equal.

$$A = egin{pmatrix} 1 & 2 & -4 \ 0 & 1 & 2 \ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of A? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

- 🔼 Same questions if a_{33} is replaced by one.
- Same questions if, in addition, a_{12} is replaced by zero.

ightharpoonup Two matrices A and B are similar if there exists a nonsingular matrix X such that

$$A = XBX^{-1}$$

- $igwedge Av = \lambda v \Longleftrightarrow B(X^{-1}v) = \lambda(X^{-1}v)$ eigenvalues remain the same, eigenvectors transformed.
- \blacktriangleright Issue: find X so that B has a simple structure

Definition: A is diagonalizable if it is similar to a diagonal matrix

- ightharpoonup THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors
- ... iff all its eigenvalues are semi-simple
- \succ ... iff its eigenvectors form a basis of \mathbb{R}^n

Transformations that preserve eigenvectors

Shift $B=A-\sigma I$: $Av=\lambda v \Longleftrightarrow Bv=(\lambda-\sigma)v$ eigenvalues move, eigenvectors remain the same.

Poly- $B=p(A)=lpha_0I+\cdots+lpha_nA^n$: $Av=\lambda v \Longleftrightarrow$ nomial $Bv=p(\lambda)v$ eigenvalues transformed, eigenvectors remain the same.

Invert $B=A^{-1}$: $Av=\lambda v \Longleftrightarrow Bv=\lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.

Shift & $B=(A-\sigma I)^{-1}$: $Av=\lambda v\iff Bv=$ Invert $(\lambda-\sigma)^{-1}v$ eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.

THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any \boldsymbol{A} there exists a unitary matrix \boldsymbol{Q} and an upper triangular matrix \boldsymbol{R} such that

$$A = QRQ^H$$

- Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).
- It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix $m{R}$
- Eigenvectors can be obtained by back-solving

$Schur\ Form\ -\ Proof$

Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $||x||_2 = 1$

There is a unitary transformation P such that $Px=e_1$. How do you define P?

- Show that $PAP^H = \left(egin{array}{c|c} \lambda & ** \\ \hline 0 & A_2 \end{array}
 ight)$.
- Apply process recursively to A_2 .
- \mathcal{L}_{8} What happens if A is Hermitian?
- Another proof altogether: use Jordan form of $m{A}$ and QR factorization

Localization theorems and perturbation analysis

- \blacktriangleright Localization: where are the eigenvalues located in \mathbb{C} ?
- Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector?
- Also: sensitivity of an eigenvalue to perturbations
- Next result is a "localization" theorem
- \blacktriangleright We have seen one such result before. Let ||.|| be a matrix norm.

 $orall \lambda \in \Lambda(A): |\lambda| \leq \|A\|$ Then:

All eigenvalues are located in a disk of radius $\|A\|$ centered at 0.

More refined result: Gerschgorin

THEOREM [Gerschgorin]

$$orall \; \lambda \; \in \Lambda(A), \quad \exists \; i \quad ext{such that} \quad |\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ j
eq i}}^{s} |a_{ij}| \; .$$

In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $ho_i = \sum_{j \neq i} |a_{ij}|$.

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where $m{D}$ is the diagonal of $m{A}$ and $-m{F} = -(m{D} - m{A})$ is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $\|(D-\lambda I)^{-1}F\|_{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A-\lambda I$ is nonsingular – a contradiction \square

Gerschgorin's theorem - example

Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$A = egin{pmatrix} 1 & -1 & 0 & 0 \ 0 & 2 & 0 & 1 \ -1 & -2 & -3 & 1 \ rac{1}{2} & rac{1}{2} & 0 & -4 \end{pmatrix}$$

- Refinement: if disks are all disjoint then each of them contains one eigenvalue
- Refinement: can combine row and column version of the theorem (column version: apply theorem to A^H).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_2=1$, and let $r=A\tilde{u}-\tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A=XDX^{-1}$, with D diagonal. Then

$$\exists \; \pmb{\lambda} \in \Lambda(A)$$
 such that $|\pmb{\lambda} - ilde{\pmb{\lambda}}| \leq \mathsf{cond}_2(X) \|\pmb{r}\|_2$.

- Very restrictive result also not too sharp in general.
- Alternative formulation. If E is a perturbation to A then for any eigenvalue $\tilde{\lambda}$ of A+E there is an eigenvalue λ of A such that:

$$|\lambda - ilde{\lambda}| \leq \mathsf{cond}_2(X) \|E\|_2$$
 .

Conditioning of Eigenvalues

Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices:

$$A(t) = A + tE$$

Eigenvalue $\lambda(t)$, Eigenvector u(t).

- lacksquare Conditioning of $oldsymbol{\lambda}$ of $oldsymbol{A}$ relative to $oldsymbol{E}$ is $\left|rac{d\lambda(t)}{dt}
 ight|_{t=0}$.
- $ightharpoonup ext{Write} \qquad A(t)u(t) = \lambda(t)u(t)$
- lacktriangle Then multiply both sides to the left by w^H

$$egin{aligned} w^H(A+tE)u(t) &= \lambda(t)w^Hu(t) &
ightarrow \ \lambda(t)w^Hu(t) &= w^HAu(t) + tw^HEu(t) \ &= \lambda w^Hu(t) + tw^HEu(t). \end{aligned}$$

$$ightarrow rac{\lambda(t)-\lambda}{t}w^{H}u(t) \ = w^{H}Eu(t)$$

ightharpoonup Take the limit at t=0,

$$\lambda'(0) = rac{w^H E u}{w^H u}$$

- Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
- Actual conditioning of an eigenvalue, given a perturbation "in the direction of E" is $|\lambda'(0)|$.
- ightharpoonup In practice only estimate of $\|E\|$ is available, so

$$|\lambda'(0)| \leq rac{\|Eu\|_2 \|w\|_2}{|(u,w)|} \leq \|E\|_2 rac{\|u\|_2 \|w\|_2}{|(u,w)|}$$

Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by

$$\mathsf{cond}(\pmb{\lambda}) = \frac{1}{\cos \theta(\pmb{u}, \pmb{w})}$$

in which u and w^H are the right and left eigenvectors, respectively, associated with λ .

Example: | Consider the matrix

$$A = \left(egin{array}{cccc} -149 & -50 & -154 \ 537 & 180 & 546 \ -27 & -9 & -25 \end{array}
ight)$$

 $igwedge \Lambda(A) = \{1,2,3\}$. Right and left eigenvectors associated with $\lambda_1 = 1$:

$$u = egin{pmatrix} 0.3162 \ -0.9487 \ 0.0 \end{pmatrix} \quad ext{and} \quad w = egin{pmatrix} 0.6810 \ 0.2253 \ 0.6967 \end{pmatrix}$$

So:

$$cond(\lambda_1) pprox 603.64$$

Perturbing a_{11} to -149.01 yields the spectrum:

$$\{0.2287, 3.2878, 2.4735\}.$$

- as expected..
- For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $\operatorname{cond}(\lambda) = 1$.

Perturbations with Multiple Eigenvalues - Example

> Consider
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

- Morst case perturbation is in 3,1 position: set $A_{31} = \epsilon$.
- Eigenvalues of perturbed A are the roots of $p(\mu) = (\mu 1)^3 4 \cdot \epsilon$.
- $m{\mu}_k = 1 + (4\epsilon)^{1/3} \ e^{rac{2ki\pi}{3}}, \quad k = 1, 2, 3$
- \blacktriangleright Hence eigenvalues of perturbed A are $1 + O(\sqrt[3]{\epsilon})$.
- If index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to A leads to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to k=1.

Basic algorithm: The power method

- Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ then normalize.
- Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- 2. For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $\alpha_k = \operatorname{argmax}_{i=1,...,n} |(Av^{(k-1)})_i|$
- 4. $v^{(k)} = \frac{1}{\alpha_k} A v^{(k-1)}$
- 5. EndDo
- $ightharpoonup rgmax_{i=1,..,n}|\mathbf{x}_{\mathrm{i}}| \equiv$ the component x_i with largest modulus

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in $\text{Null}(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $m{v}^{(k)}$ is = vector $m{A}^k m{v}^{(0)}$ normalized by a certain scalar $\hat{m{lpha}}_k$ in such a way that its largest component is 1.
- ightharpoonup Decompose initial vector $oldsymbol{v}^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$

 \blacktriangleright Each u_i is an eigenvector associated with λ_i .

lacksquare Note that $A^ku_i=\lambda_i^ku_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} \, imes \, \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} \, imes \, \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} \, imes \, \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- Second term inside bracket converges to zero. QED
- Proof suggests that the convergence factor is given by

$$ho_D = rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size n=55. Dominant eigenvalues are $\lambda=1$ and $\lambda=-1$ the power method applied directly to A fails. (Why?)

We can consider instead the matrix I+A The eigenvalue $\lambda=1$ is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

The Shifted Power Method

In previous example shifted A into B=A+I before applying power method. We could also iterate with $B(\sigma)=A+\sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.0000011
88	0.971D-07	0.261D-07	1.00000002

- ightharpoonup Question: What is the best shift-of-origin σ to use?
- Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ . Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- \blacktriangleright Idea: use the power method on A^{-1} .
- Will compute the eigenvalues closest to zero.
- ightharpoonup Shift-and-invert Use power method on $\overline{(A-\sigma I)^{-1}}$.
- \blacktriangleright will compute eigenvalues closest to σ .
- Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- Advantages: fast convergence in general.
- \blacktriangleright Drawbacks: need to factor A (or $A-\sigma I$) into LU.