Eigenvalue Problems

Let A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem:

$$Ax = \lambda x \quad \lambda \in \mathbb{C} : \text{eigenvalue}$$

$$x \in \mathbb{C}^n : \text{eigenvector}$$

Types of Problems:

- Compute a few λ_i's with smallest or largest real parts;
- Compute all λ_i's in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all λ_i's.

Basic definitions and properties

A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the spectrum of A. Notation: $\Lambda(A)$.

- λ is an eigenvalue iff the columns of $A - \lambda I$ are linearly dependent.
- λ is an eigenvalue iff $\det(A - \lambda I) = 0$.
- λ is an eigenvalue iff $w^H(A - \lambda I) = 0$.
- w is a left eigenvector of A ($u =$ right eigenvector)
- λ is an eigenvalue iff $\det(A - \lambda I) = 0$.
Basic definitions and properties (cont.)

- An eigenvalue is a root of the Characteristic polynomial:
 \[p_A(\lambda) = \det(A - \lambda I) \]

- So there are \(n \) eigenvalues (counted with their multiplicities).
- The multiplicity of these eigenvalues as roots of \(p_A \) are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue \(\lambda_i \) is the number of linearly independent eigenvectors associated with \(\lambda_i \).
- Geometric multiplicity is \(\leq \) algebraic multiplicity.
- An eigenvalue is simple if its (algebraic) multiplicity is one.
- It is semi-simple if its geometric and algebraic multiplicities are equal.
- Two matrices \(A \) and \(B \) are similar if there exists a nonsingular matrix \(X \) such that \(A = XBX^{-1} \).

Transformations that preserve eigenvectors

- Shift: \(B = A - \sigma I \): \(Av = \lambda v \iff Bv = (\lambda - \sigma)v \)
 eigenvalues move, eigenvectors remain the same.
- Polynomial: \(B = p(A) = \alpha_0 I + \cdots + \alpha_n A^n \): \(Av = \lambda v \iff Bv = p(\lambda)v \)
 eigenvalues transformed, eigenvectors remain the same.
- Invert: \(B = A^{-1} \): \(Av = \lambda v \iff Bv = \lambda^{-1}v \)
 eigenvalues inverted, eigenvectors remain the same.
- Shift & Invert: \(B = (A - \sigma I)^{-1} \): \(Av = \lambda v \iff Bv = (\lambda - \sigma)^{-1}v \)
 eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.
THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R such that

$$A = QRQ^H$$

Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).

It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix R.

Eigenvectors can be obtained by back-solving.

Perturbation analysis

- General questions: If A is perturbed how does an eigenvalue change? How about an eigenvector?
- Also: sensitivity of an eigenvalue to perturbations

THEOREM [Gerschgorin]

$$\forall \lambda \in \Lambda(A), \exists i \text{ such that } |\lambda - a_{ii}| \leq \sum_{j=1, j \neq i}^{n} |a_{ij}| .$$

In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} |a_{ij}|$.

Schur Form – Proof

- Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$
- There is a unitary transformation P such that $Px = e_1$. How do you define P?
- Show that $PAP^H = \left(\frac{\lambda}{0} \right)$.
- Apply process recursively to A_2.
- What happens if A is Hermitian?
- Another proof altogether: use Jordan form of A and QR factorization

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $|\lambda - a_{ii}| > \rho_i$ for all i. Write matrix $A - \lambda I$ as:

$$A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$$

where D is the diagonal of A and $-F = -(D - A)$ is the matrix of off-diagonal entries. Now write

$$A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$$

From assumptions we have $\|(D - \lambda I)^{-1}F\|_\infty < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction □
Find a region of the complex plane where the eigenvalues of the following matrix are located:

\[
A = \begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{pmatrix}
\]

- Refinement: if disks are all disjoint then each of them contains one eigenvalue
- Refinement: can combine row and column version of the theorem (column version: apply theorem to \(A^H\)).

Conditioning of Eigenvalues

- Assume that \(\lambda\) is a simple eigenvalue with right and left eigenvectors \(u\) and \(w^H\) respectively. Consider the matrices:

\[
A(t) = A + tE
\]

Eigenvalue \(\lambda(t)\), Eigenvector \(u(t)\).

- Conditioning of \(\lambda\) of \(A\) relative to \(E\) is

\[
\left| \frac{d\lambda(t)}{dt} \right|_{t=0}.
\]

- Write

\[
A(t)u(t) = \lambda(t)u(t)
\]

- Then multiply both sides to the left by \(w^H\)

\[
w^H(A + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow \\
\lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t) = \lambda w^Hu(t) + tw^HEu(t).
\]

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let \(\tilde{\lambda}, \tilde{u}\) be an approximate eigenpair with \(\|\tilde{u}\|_2 = 1\), and let \(r = A\tilde{u} - \tilde{\lambda}\tilde{u}\) (‘residual vector’). Assume \(A\) is diagonalizable: \(A = XDX^{-1}\), with \(D\) diagonal. Then

\[
\exists \lambda \in \Lambda(A) \text{ such that } |\lambda - \tilde{\lambda}| \leq \text{cond}(X)\|r\|_2.
\]

- Very restrictive result - also not too sharp in general.
- Alternative formulation. If \(E\) is a perturbation to \(A\) then for any eigenvalue \(\tilde{\lambda}\) of \(A + E\) there is an eigenvalue \(\lambda\) of \(A\) such that:

\[
|\lambda - \tilde{\lambda}| \leq \text{cond}(X)\|E\|_2.
\]

\[
\lambda(t) - \lambda \frac{w^Hu(t)}{t} = w^HEu(t)
\]

- Take the limit at \(t = 0\),

\[
\lambda'(0) = \frac{w^HEu}{w^Hu}
\]

- Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
- Actual conditioning of an eigenvalue, given a perturbation “in the direction of \(E\)’’ is \(|\lambda'(0)|\).
- In practice only estimate of \(\|E\|\) is available, so

\[
|\lambda'(0)| \leq \frac{\|Eu\|_2\|w\|_2}{|(u, w)|} \leq \|E\|_2\|u\|_2\|w\|_2 \frac{\|u\|_2\|w\|_2}{|(u, w)|}.
\]
Definition. The condition number of a simple eigenvalue λ of an arbitrary matrix A is defined by
\[
\text{cond}(\lambda) = \frac{1}{\cos \theta(u,w)}
\]
in which u and w^H are the right and left eigenvectors, respectively, associated with λ.

Example: Consider the matrix
\[
A = \begin{pmatrix}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{pmatrix}
\]

So:
\[
\text{cond}(\lambda_1) \approx 603.64
\]

Perturbations with Multiple Eigenvalues - Example

For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since $\text{cond}(\lambda) = 1$.

Basic algorithm: The power method

Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

\[
\text{argmax}_{i=1,\ldots,n} |x_i| \equiv \text{the component } x_i \text{ with largest modulus}
\]
Convergence of the power method

THEOREM Assume there is one eigenvalue \(\lambda_1 \) of \(A \), s.t. \(|\lambda_1| > |\lambda_j| \), for \(j \neq i \), and that \(\lambda_1 \) is semi-simple. Then either the initial vector \(v^{(0)} \) has no component in \(\text{Null}(A \ - \ \lambda_1 I) \) or \(v^{(k)} \) converges to an eigenvector associated with \(\lambda_1 \) and \(\alpha_k \rightarrow \lambda_1 \).

Proof in the diagonalizable case.

\[v^{(k)} = v^{(0)} = \sum_{i=1}^{n} \gamma_i u_i \]

Each \(u_i \) is an eigenvector associated with \(\lambda_i \).

\[\rho_D = \frac{|\lambda_2|}{|\lambda_1|} \]

where \(\lambda_2 \) is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size \(n = 55 \). Dominant eigenvalues are \(\lambda = 1 \) and \(\lambda = -1 \) \(\Rightarrow \) the power method applied directly to \(A \) fails. (Why?)

We can consider instead the matrix \(I + A \) The eigenvalue \(\lambda = 1 \) is then transformed into the (only) dominant eigenvalue \(\lambda = 2 \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Iteration} & \text{Norm of diff.} & \text{Res. norm} & \text{Eigenvalue} \\
\hline
20 & 0.639D-01 & 0.276D-01 & 1.02591636 \\
40 & 0.129D-01 & 0.513D-02 & 1.00680780 \\
60 & 0.192D-02 & 0.808D-03 & 1.00102145 \\
80 & 0.280D-03 & 0.121D-03 & 1.00014720 \\
100 & 0.400D-04 & 0.509D-05 & 1.00000446 \\
120 & 0.562D-05 & 0.118D-06 & 1.00000011 \\
140 & 0.781D-06 & 0.344D-06 & 1.00000005 \\
161 & 0.973D-07 & 0.430D-07 & 1.00000000 \\
\hline
\end{array}
\]

The Shifted Power Method

\[
\begin{align*}
A^k u_i &= \lambda_i^k u_i \\
v^{(k)} &= \frac{1}{\text{scaling}} \times \sum_{i=1}^{n} \lambda_i^k \gamma_i u_i \\
&= \frac{1}{\text{scaling}} \times \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^{n} \lambda_i^k \gamma_i u_i \right] \\
&= \frac{1}{\text{scaling}} \times \left[u_1 + \sum_{i=2}^{n} \left(\frac{\lambda_i}{\lambda_1} \right)^k \gamma_i u_i \right]
\end{align*}
\]

\[\text{Second term inside bracket converges to zero. QED} \]

\[\rho_D = \frac{|\lambda_2|}{|\lambda_1|} \]

Example: With \(\sigma = 0.1 \) we get the following improvement.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Iteration} & \text{Norm of diff.} & \text{Res. norm} & \text{Eigenvalue} \\
\hline
20 & 0.273D-01 & 0.794D-02 & 1.00524001 \\
40 & 0.729D-03 & 0.210D-03 & 1.00016755 \\
60 & 0.183D-04 & 0.509D-05 & 1.00000446 \\
80 & 0.437D-06 & 0.118D-06 & 1.00000011 \\
100 & 0.971D-07 & 0.261D-07 & 1.00000002 \\
\hline
\end{array}
\]
Question: What is the best shift-of-origin σ to use?

Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n,$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = \frac{\lambda_2 + \lambda_n}{2}$$

Plot a typical function $\phi(\sigma) = \rho(A - \sigma I)$ as a function of σ. Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- Idea: use the power method on A^{-1}.
- Will compute the eigenvalues closest to zero.
- Shift-and-invert: Use power method on $(A - \sigma I)^{-1}$.
- will compute eigenvalues closest to σ.
- Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- Advantages: fast convergence in general.
- Drawbacks: need to factor A (or $A - \sigma I$) into LU.