LARGE SPARSE EIGENVALUE PROBLEMS

e Projection methods
e The subspace iteration
e Krylov subspace methods: Arnoldi and Lanczos

e Golub-Kahan-Lanczos bidiagonalization
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General Tools for Solving Large Eigen-Problems

Projection techniques — Arnoldi, Lanczos, Subspace lteration;
Preconditioninings: shift-and-invert, Polynomials, ...

>
>
» Deflation and restarting techniques
>

Computational codes often combine these three ingredients
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A few popular solution Methods

e Subspace lteration [Now less popular — sometimes used for valida-
tion]
e Arnoldi's method (or Lanczos) with polynomial acceleration

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanc-

zos for (A — o I)™1]
e Davidson's method and variants, Jacobi-Davidson

e Specialized method: Automatic Multilevel Substructuring (AMLS).
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Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L
»  Given: Two subspaces K and L of same dimension.
»  Approximate eigenpairs 5\, u, obtained by solving:
Find: A\ € C,& € K suchthat(AI — A)a L L

»  Two types of methods:
Orthogonal projection methods: Situation when L = K.
Oblique projection methods: When L # K.

»  First situation leads to Rayleigh-Ritz procedure
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to
eigenvectors of A.

Question: How to extract ‘best’ approximations to eigenvalues/
eigenvectors from this subspace?

Answer: | Orthogonal projection method

» Let Q = [q1,--.,Qqm] = orthonormal basis of X

»  Orthogonal projection method onto X yields:
QA —-Aa =0 —

> QPAQy = S\y where © = Qy

»  Known as Rayleigh Ritz process
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Procedure:

1. Obtain an orthonormal basis of X

2. Compute C = Q7 AQ (an m X m matrix)
3. Obtain Schur factorization of C, C = YRY ¥
4. Compute U = QY

Property: if X is (exactly) invariant, then procedure will yield
exact eigenvalues and eigenvectors.

Proof: Since X is invariant, (A — S\I)'u, = Qz for a certain z.
Q" Qz = 0 implies 2 = 0 and therefore (A — AI)u = 0.

» Can use this procedure in conjunction with the subspace obtained
from subspace iteration algorithm
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Subspace Iteration

Original idea:  projection technique onto a subspace of the form
Y = AFX
Practically: A replaced by suitable polynomial

Advantages: @ Easy to implement (in symmetric case);
e Easy to analyze;

Disadvantage: Slow.

»  Often used with polynomial acceleration: A*X replaced by
Cr(A)X. Typically Cy = Chebyshev polynomial.
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Algorithm: Subspace lteration with Projection

1. Start: Choose an initial system of vectors X = [xg, ..., Tmn]
and an initial polynomial C.

2. Iterate: Until convergence do:
(a) Compute Z = C(A)X. [Simplest case: Z = AX ]
(b) Orthonormalize Z:  [Z, Rz] = qr(Z,0)
(c) Compute B = ZHAZ
(d) Compute the Schur factorization B = Y RgY # of B
e) Compute X := ZY.
)

f) Test for convergence. If satisfied stop. Else select a new poly-
nomial Cj, and continue.

(
(
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THEOREM: Let Sy = span{xi,x3,...,Zmn} and assume that
Sy is such that the vectors { Px;}i—1,....m are linearly independent
where P is the spectral projector associated with Ay, ..., Ay, Let
P the orthogonal projector onto the subspace Sy, = span{Xy}.
Then for each eigenvector u; of A, ¢ = 1,...,m, there exists a
unique vector s; in the subspace Sy such that Ps; = u;. Moreover,
the following inequality is satisfied

}\m—i—l
Ai

k
(I = Pr)uillzs < [lui — sill2 ( + ek) (1)

where €, tends to zero as k tends to infinity.
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KRYLOV SUBSPACE METHODS
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Krylov subspace methods

Principle:  Projection methods on Krylov subspaces:

Km(A7 vl) = Span{'vl, Avyy -, Am—l,vl}

e The most important class of projection methods [for linear systems
and for eigenvalue problems|

e Variants depend on the subspace L
» Let u = deg. of minimal polynom. of v;. Then:

e K., = {p(A)v1|p = polynomial of degree < m — 1}
e K,, = K, for all m > p. Moreover, K, is invariant under A.

edim(K,,) = miff u > m.
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Arnoldi’s algorithm

»  Goal: to compute an orthogonal basis of K,

» Input: Initial vector vy, with ||v1]|2 = 1 and m.
ALGORITHM : 1. Arnoldi’s procedure
Forg =1,...,m do
Compute w := Avj;
. . hi’j = (w, ’l)i)
Fort =1,...,3, do w = w — hy v,
hjt1; = llwll2;
Vi1 = w/hji1;
End

»  Based on Gram-Schmidt procedure
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Result of Arnoldi’s algorithm

r r Tr T X
r r* r T I

r T Tr T I
v > o r T r T T
Let: H,, = H,, = r T T T

m wwwam

r T T

r T
r T

T

Results:

1. Vi, = [v1, 02, ..., U] orthonormal basis of K.
2. AV, = m—}—lﬁm = ViHp, + hm~|—1,mvm+legl
3. Vn:fAVm = H,, = H,,— last row.
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Application to eigenvalue problems

»  Write approximate eigenvector as © = V,,,y
»  Galerkin condition:
(A=ADVyy L Ky — VHA-X)V,y =0

»  Approximate eigenvalues are eigenvalues of H,,
Hnyj = Ajy;
»  Associated approximate eigenvectors are

uj = Viny;

»  Typically a few of the outermost eigenvalues will converge first.
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Hermitian case: The Lanczos Algorithm

»  The Hessenberg matrix becomes tridiagonal :

A=AH and VTfAszﬂm —)Hm:Hg

» Denote H,, by T, and H,,, by T,,. We can write

a; B2
52 (8%) 53
(6"
Tm — /83 3 164
Bm m
» Relation AV,,, = V,,, 11T,
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»  Consequence: three term recurrence
Bit1vjn = Avj — ajvj — Bjvj

ALGORITHM : 2. Lanczos

1. Choose an initial vy with ||v_1]|2 = 1;
Set 31 = 0,v9 =0

2. Fory =1,2,...,m Do:

3 w; = Avj — Bj'vj_l

4. o= (wj,v5)

5. wj = Wi — QU

6 Bjt+1 = ||wj||2. If Bj41 = O then Stop

7. iy = wi/Bin

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos

14-16 Gvl4 10.1,10.5.1 - Eigen3

14-16




» In theory v;'s defined by 3-term recurrence are orthogonal.

»  However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly,
when the first eigenpair has converged. It is a sign of loss of linear
independence of the computed eigenvectors. When orthogonality is
lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

» Full reorthogonalization — reorthogonalize v;1 against all
previous v;'s every time.

» Partial reorthogonalization — reorthogonalize v;41 against
all previous v;'s only when needed [Parlett & Simon]

»  Selective reorthogonalization - reorthogonalize w; g
against computed eigenvectors [Parlett & Scott]

»  No reorthogonalization — Do not reorthogonalize - but take
measures to deal with 'spurious’ eigenvalues. [Cullum &

Willoughby]
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Lanczos Bidiagonalization i 7
o1 By
: ; mXn (85) /82
»  We now deal with rectangular matrices. Let A € R . B — o )
. S :
ALGORITHM : 3. Golub-Kahan-Lanczos Let: e
_ . ' «a
1. Choose an initial vy with ||v1|l2 = 1; L » Pr)

Set Bp =0, u9g =0

2. Fork=1,...,p Do:
3. 4= Avp — Broaukr—
4. ar = [|al]2 ; up = u/oy
5 0= ATuk: — QU
6.  Br=|0ll2; vk := /B
7. EndDo
Let: Vor1r = [v1,V2,+ -+ ,Up11] € Rnx(p+1)
Up = [ul, Uy s * up] e ]RmXp
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» B, = B,(:,1:p)
>» ‘/p:['vl’v%...,vp] eRnXP

> VoV =1

> Uy, =1
Result: p =P

> AV, =U,B,
> ATU, = V1,1 BY
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\

yvYy 'Yy

>

Observe that : AT(AV,) = AT(U,B,)
= ‘/;H-IB;I;BP

B;pr is a (symmetric) tridiagonal matrix of size (p+ 1) X p
Call this matrix Tj. Then: (ATA)V;, = V;D+1Tp

Standard Lanczos relation !
Algorithm is equivalent to standard Lanczos applied to AT A.

Similar result for the w;'s [involves A AT]

Work out the details: What are the entries of Tp relative to
those of B,,?

14-21

Gvl4 10.1,10.5.1 - Eigen3

14-21




