VECTOR & MATRIX NORMS

- Inner products
- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.

Inner products and Norms

Inner product of 2 vectors

\[(x, y) = x_1y_1 + x_2y_2 + \cdots + x_ny_n \quad \text{in} \quad \mathbb{R}^n\]

Notation: \((x, y)\) or \(y^T x\)

For complex vectors

\[(x, y) = x_1\bar{y}_1 + x_2\bar{y}_2 + \cdots + x_n\bar{y}_n \quad \text{in} \quad \mathbb{C}^n\]

Note: \((x, y) = y^H x\)

- On notation: Sometimes you will find \(\langle ., . \rangle\) for \((., .)\) and \(A^*\) instead of \(A^H\)

Properties of Inner Product:

- \((x, y) = (y, x)\).
- \((\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)\) \quad \text{[Linearity]}
- \((x, x) \geq 0\) is always real and non-negative.
- \((x, x) = 0\) iff \(x = 0\) (for finite dimensional spaces).
- Given \(A \in \mathbb{C}^{m \times n}\) then

\[(Ax, y) = (x, A^H y) \quad \forall x \in \mathbb{C}^n, \forall y \in \mathbb{C}^m\]

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

- A vector norm on a vector space \(X\) is a real-valued function on \(X\), which satisfies the following three conditions:

1. \(|x| \geq 0, \quad \forall x \in X, \quad \text{and} \quad |x| = 0\) iff \(x = 0\).
2. \(|\alpha x| = |\alpha||x|, \quad \forall x \in X, \quad \forall \alpha \in \mathbb{C}.
3. \(|x + y| \leq |x| + |y|, \quad \forall x, y \in X.

- Third property is called the triangle inequality.
Important example: Euclidean norm on $X = \mathbb{C}^n$,

$$\|x\|_2 = (x, x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$$

Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}.$$

Find out (online search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)

The Cauchy-Schwartz inequality (important) is:

$$|(x, y)| \leq \|x\|_2 \|y\|_2.$$

When do you have equality in the above relation?

Expand $(x + y, x + y)$. What does the Cauchy-Schwarz inequality imply?

The Hölder inequality (less important for $p \neq 2$) is:

$$|(x, y)| \leq \|x\|_p \|y\|_q,$$

with $\frac{1}{p} + \frac{1}{q} = 1$

Second triangle inequality:

$$\|x\| - \|y\| \leq \|x - y\|.$$

Consider the metric $d(x, y) = \max_i |x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Property:

- Limit of $\|x\|_p$ when $p \to \infty$ exists:

$$\lim_{p \to \infty} \|x\|_p = \max_{i=1}^{n} |x_i|$$

- Defines a norm denoted by $\|\cdot\|_\infty$.

- The cases $p = 1$, $p = 2$, and $p = \infty$ lead to the most important norms $\|\cdot\|_p$ in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|,$$

$$\|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2},$$

$$\|x\|_\infty = \max_{i=1,\ldots,n} |x_i|.$$

Equivalence of norms:

In finite dimensional spaces (\mathbb{R}^n, \mathbb{C}^n, ..) all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α, β such that:

$$\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x).$$

How can you prove this result? [Hint: Show for $\phi_2 = \|\cdot\|_\infty$]

We can bound one norm in terms of any other norm.

Show that for any x:

$$\frac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2 \leq \|x\|_1$$

What are the "unit balls" $B_p = \{x \mid \|x\|_p \leq 1\}$ associated with the norms $\|\cdot\|_p$ for $p = 1, 2, \infty$, in \mathbb{R}^2?
Convergence of vector sequences

A sequence of vectors \(x^{(k)}, k = 1, \ldots, \infty \) converges to a vector \(x \) with respect to the norm \(\| \| \) if, by definition,
\[
\lim_{k \to \infty} \| x^{(k)} - x \| = 0
\]

Important point: because all norms in \(\mathbb{R}^n \) are equivalent, the convergence of \(x^{(k)} \) w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:
\[
\lim_{k \to \infty} x^{(k)} = x
\]

Matrix norms

- Can define matrix norms by considering \(m \times n \) matrices as vectors in \(\mathbb{R}^{mn} \). These norms satisfy the usual properties of vector norms, i.e.,

1. \(\| A \| \geq 0, \forall A \in \mathbb{C}^{m \times n}, \text{ and } \| A \| = 0 \text{ iff } A = 0 \)
2. \(\| \alpha A \| = |\alpha| \| A \|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C} \)
3. \(\| A + B \| \leq \| A \| + \| B \|, \forall A, B \in \mathbb{C}^{m \times n} \).

- However, these will lack (in general) the right properties for composition of operators (product of matrices).
- The case of \(\| . \|_2 \) yields the Frobenius norm of matrices.

Example: The sequence
\[
x^{(k)} = \begin{pmatrix}
1 + 1/k \\
k \\
k + \log_2 k \\
1/k
\end{pmatrix}
\]
converges to
\[
x = \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
\]

Note: Convergence of \(x^{(k)} \) to \(x \) is the same as the convergence of each individual component \(x^{(k)}_i \) of \(x^{(k)} \) to the corresponding component \(x_i \) of \(x \).

Matrix norms

- Given a matrix \(A \) in \(\mathbb{C}^{m \times n} \), define the set of matrix norms
\[
\| A \|_p = \max_{x \in \mathbb{C}^n, x \neq 0} \frac{\| Ax \|_p}{\| x \|_p}
\]

- These norms satisfy the usual properties of vector norms (see previous page).
- The matrix norm \(\| . \|_p \) is induced by the vector norm \(\| . \|_p \).
- Again, important cases are for \(p = 1, 2, \infty \).
- Show that
\[
\| A \|_p = \max_{x \in \mathbb{C}^n, \| x \|_p = 1} \| Ax \|_p
\]
A fundamental property of matrix norms is consistency
\[
\|AB\|_p \leq \|A\|_p \|B\|_p.
\]
[Also termed “sub-multiplicativity”]

Consequence: (for square matrices)
\[
\|A^k\|_p \leq \|A\|_p^k
\]
\(A^k\) converges to zero if any of its \(p\)-norms is \(< 1\)
[Note: sufficient but not necessary condition]

Compute the Frobenius norms of the matrices
\[
\begin{pmatrix}
1 & 1 \\
1 & 0 \\
3 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 2 & -1 \\
-1 & \sqrt{5} & 0 \\
-1 & 1 & \sqrt{2}
\end{pmatrix}
\]

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwarz]

Define the ‘vector 1-norm’ of a matrix \(A\) as the 1-norm of the vector of stacked columns of \(A\). Is this norm a consistent matrix norm?
[Hint: Result is true – Use Cauchy-Schwarz to prove it.]

The Frobenius norm of a matrix is defined by
\[
\|A\|_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)^{1/2}.
\]

Same as the 2-norm of the column vector in \(\mathbb{C}^{mn}\) consisting of all the columns (respectively rows) of \(A\).

This norm is also consistent [but not induced from a vector norm]

Recall the notation: (for square \(n \times n\) matrices)
\[
\rho(A) = \max |\lambda_i(A)|; \quad \text{Tr}(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i(A)
\]
where \(\lambda_i(A), i = 1, 2, \ldots, n\) are all eigenvalues of \(A\).

\[
\|A\|_1 = \max_{j=1,\ldots,n} \sum_{i=1}^{m} |a_{ij}|,
\]
\[
\|A\|_\infty = \max_{i=1,\ldots,m} \sum_{j=1}^{n} |a_{ij}|,
\]
\[
\|A\|_2 = \left[\rho(A^HA)^{1/2} = \left[\rho(AA^H)^{1/2}\right],
\|A\|_F = \left[\text{Tr}(A^HA)^{1/2} = \left[\text{Tr}(AA^H)^{1/2}\right].
\]
Compute the p-norm for $p = 1, 2, \infty, F$ for the matrix $A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$.

Show that $\rho(A) \leq \|A\|$ for any matrix norm.

Is $\rho(A)$ a norm?

1. $\rho(A) = \|A\|_2$ when A is Hermitian ($A^H = A$). True for this particular case...

2. ... However, not true in general. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we have $\rho(A) = 0$ while $A \neq 0$. Also, triangle inequality not satisfied for the pair A and $B = A^T$. Indeed, $\rho(A + B) = 1$ while $\rho(A) + \rho(B) = 0$.

Given a function $f(t)$ (e.g., e^t) how would you define $f(A)$? [Was seen earlier. Here you need to fully justify answer. Assume A is diagonalizable]

Assume we have r nonzero singular values:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

Then:

- $\|A\|_2 = \sigma_1$
- $\|A\|_F = \left(\sum_{i=1}^{r} \sigma_i^2\right)^{1/2}$

More generally: Schatten p-norm ($p \geq 1$) defined by

$$\|A\|_{*,p} = \left(\sum_{i=1}^{r} \sigma_i^p\right)^{1/p}$$

Note: $\|A\|_{*,p} = p$-norm of vector $[\sigma_1; \sigma_2; \cdots; \sigma_r]$

In particular: $\|A\|_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $\|A\|_*$. (Common in machine learning.)