SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting - permutation matrices.
- Case of banded systems

Background: Linear systems

The Problem: \boldsymbol{A} is an $\boldsymbol{n} \times \boldsymbol{n}$ matrix, and \boldsymbol{b} a vector of $\mathbb{R}^{\boldsymbol{n}}$. Find \boldsymbol{x} such that:

$$
A x=b
$$

$>\boldsymbol{x}$ is the unknown vector, \boldsymbol{b} the right-hand side, and \boldsymbol{A} is the coefficient matrix

Example:

$$
\left\{\begin{array}{r}
2 x_{1}+4 x_{2}+4 x_{3}=6 \\
x_{1}+5 x_{2}+6 x_{3}=4 \\
x_{1}+3 x_{2}+x_{3}=8
\end{array} \text { or }\left(\begin{array}{lll}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
8
\end{array}\right)\right.
$$

\propto_{0} Solution of above system ?
3-2
> Standard mathematical solution by Cramer's rule:

$$
x_{i}=\operatorname{det}\left(A_{i}\right) / \operatorname{det}(A)
$$

$\boldsymbol{A}_{\boldsymbol{i}}=$ matrix obtained by replacing \boldsymbol{i}-th column by \boldsymbol{b}.

- Note: This formula is useless in practice beyond $\boldsymbol{n}=\mathbf{3}$ or $n=4$.

Three situations:

1. The matrix \boldsymbol{A} is nonsingular. There is a unique solution given by $x=A^{-1} b$.
2. The matrix \boldsymbol{A} is singular and $\boldsymbol{b} \in \operatorname{Ran}(\boldsymbol{A})$. There are infinitely many solutions.
3. The matrix \boldsymbol{A} is singular and $\boldsymbol{b} \notin \operatorname{Ran}(\boldsymbol{A})$. There are no solutions.

Example: (1) Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right) \quad b=\binom{1}{8} \cdot A$ is nonsingu-
lar $>$ a unique solution $x=\binom{0.5}{2}$.
Example: (2) Case where \boldsymbol{A} is singular $\& \boldsymbol{b} \in \operatorname{Ran}(\boldsymbol{A})$:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right), \quad b=\binom{1}{0}
$$

$>$ infinitely many solutions: $x(\alpha)=\binom{0.5}{\alpha} \quad \forall \alpha$.
Example: (3) Let \boldsymbol{A} same as above, but $b=\binom{1}{1}$.
> No solutions since 2nd equation cannot be satisfied

Triangular linear systems

Example:

$$
\left(\begin{array}{rrr}
2 & 4 & 4 \\
0 & 5 & -2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)
$$

> One equation can be trivially solved: the last one. $x_{3}=2$
$>x_{3}$ is known we can now solve the 2 nd equation:

$$
5 x_{2}-2 x_{3}=1 \rightarrow 5 x_{2}-2 \times 2=1 \rightarrow x_{2}=1
$$

Finally \boldsymbol{x}_{1} can be determined similarly:

$$
2 x_{1}+4 x_{2}+4 x_{3}=2 \rightarrow \ldots \rightarrow x_{1}=-5
$$

ALGORITHM : 1. Back-Substitution algorithm

$$
\begin{aligned}
& \text { For } i=n:-1: 1 \text { do: } \\
& \left.\quad \begin{array}{l}
t:=b_{i} \\
\\
\text { For } j=i+1: n \text { do } \\
\quad t:=t-a_{i j} x_{j} \\
\text { End } \\
\quad x_{i}=t / a_{i i}
\end{array}\right\} \begin{array}{l}
t:=b_{i}-\left(a_{i, i+1: n}, x_{i+1: n}\right) \\
\text { End }
\end{array}
\end{aligned}
$$

We must require that each $a_{i i} \neq 0$
Operation count?

Column version of back-substitution

Back-Substitution algorithm. Column version

$$
\begin{aligned}
& \text { For } j=n:-1: 1 \text { do: } \\
& \quad x_{j}=b_{j} / a_{j j} \\
& \quad \text { For } i=1: j-1 \text { do } \\
& \quad b_{i}:=b_{i}-x_{j} * a_{i j} \\
& \quad \text { End }
\end{aligned}
$$

End
Δ_{02} Justify the above algorithm [Show that it does indeed compute the solution]
> Analogous algorithms for lower triangular systems.

Linear Systems of Equations: Gaussian Elimination

> Back to arbitrary linear systems.
Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

$$
\left\{\begin{array}{rr|}
2 x_{1}+4 x_{2}+4 x_{3}= & 2 \\
x_{1}+3 x_{2}+1 x_{3}= & 1 \\
x_{1}+5 x_{2}+6 x_{3}= & -6
\end{array} \text { tableau: } \begin{array}{|ccc|c}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array}\right.
$$

> Main operation used: scaling and adding rows.
Example: Replace row 2 by: row $2-\frac{1}{2}$ *row 1 :

$$
\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array} \rightarrow \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}
$$

This is equivalent to:

$$
\begin{array}{|rll}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\left|\times \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array}\right|=\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}
$$

$>$ The left-hand matrix is of the form

$$
M=I-v e_{1}^{T} \text { with } v=\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0
\end{array}\right)
$$

Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

2	4	4	2					
1	3	1	1					
1	5	6	-6	into:	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
:---:	:---:	:---:	:---:					
0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					
$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					

$$
\operatorname{row}_{2}:=\operatorname{row}_{2}-\frac{1}{2} \times \operatorname{row}_{1}: \quad \operatorname{row}_{3}:=\operatorname{row}_{3}-\frac{1}{2} \times \operatorname{row}_{1}:
$$

$$
\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}
$$

2	4	4	2
0	1	-1	0
0	3	4	-7

Equivalent to

$$
\begin{array}{|rrl}
\hline 1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\left|\times \begin{array}{|ccc|c}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array}\right|=\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\hline
\end{array}
$$

$$
[A, b] \rightarrow\left[M_{1} A, M_{1} b\right] ; \quad M_{1}=I-v^{(1)} e_{1}^{T} ; \quad v^{(1)}=\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
$$

New system $\boldsymbol{A}_{1} \boldsymbol{x}=\boldsymbol{b}_{1}$. Step 2 must now transform:

$$
\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{array} \text { into: } \begin{array}{|ccc|c|}
\hline \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\
\mathbf{0} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\
\mathbf{0} & 0 & \boldsymbol{x} & \boldsymbol{x} \\
\hline
\end{array}
$$

$$
\text { row } \left._{3}:=\text { row }_{3}-3 \times \text { row }_{2}: \rightarrow \begin{array}{|ccr|c|}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{array}\right]
$$

Equivalent to

1	0	0						
0	1	0						
0	-3	1	\left\lvert\,\times	2	4	4	2	
---:	---:	---:	:---:					
0	1	-1	0					
0	3	4	-7	$=$	2	4	4	2
---:	---:	---:	:---:					
0	1	-1	0					
0	0	7	-7	\right.				

Second transformation is as follows:

$$
\left[A_{1}, b_{1}\right] \rightarrow\left[M_{2} A_{1}, M_{2} b_{1}\right] ; M_{2}=I-v^{(2)} e_{2}^{T} ; v^{(2)}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)
$$

Triangular system > Solve.

ALGORITHM : 2. Gaussian Elimination

1. For $\boldsymbol{k}=1: \boldsymbol{n}-1$ Do:
2. For $\boldsymbol{i}=\boldsymbol{k}+1: \boldsymbol{n}$ Do:
3. \quad piv $:=a_{i k} / a_{k k}$
4. For $j:=k+1: n+1$ Do:
5. $\quad a_{i j}:=a_{i j}-p i v * a_{k j}$
6. End
7. End
8. End
$>$ Operation count:
$T=\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}\left[1+\sum_{j=k+1}^{n+1} 2\right]=\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}(2(n-k)+3)=\ldots$
$\&_{0}$ 3 Complete the above calculation. Order of the cost?

The LU factorization

$>$ Now ignore the right-hand side from the transformations.
Observation: Gaussian elimination is equivalent to $n-1$ successive Gaussian transformations, i.e., multiplications with matrices of the form $M_{k}=I-v^{(k)} e_{k}^{T}$, where the first k components of $\boldsymbol{v}^{(k)}$ equal zero.
$>\operatorname{Set} A_{0} \equiv A$

$$
\begin{aligned}
A \rightarrow M_{1} A_{0}=A_{1} & \rightarrow M_{2} A_{1}=A_{2} \rightarrow M_{3} A_{2}=A_{3} \cdots \\
& \rightarrow M_{n-1} A_{n-2}=A_{n-1} \equiv U
\end{aligned}
$$

$>$ Last $\boldsymbol{A}_{\boldsymbol{k}} \equiv \boldsymbol{U}$ is an upper triangular matrix.
$>$ At each step we have: $A_{k}=M_{k+1}^{-1} A_{k+1}$. Therefore:

$$
\begin{aligned}
A_{0} & =M_{1}^{-1} A_{1} \\
& =M_{1}^{-1} M_{2}^{-1} A_{2} \\
& =M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} A_{3} \\
& =\cdots \\
& =M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1} A_{n-1} \\
& L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1}
\end{aligned}
$$

Note: \boldsymbol{L} is Lower triangular, $\boldsymbol{A}_{\boldsymbol{n - 1}}$ is upper triangular
LU decomposition : $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$

How to get L?

$$
L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1}
$$

> Consider only the first 2 matrices in this product.
$>$ Note $M_{k}^{-1}=\left(I-v^{(k)} e_{k}^{T}\right)^{-1}=\left(I+v^{(k)} e_{k}^{T}\right)$. So:
$M_{1}^{-1} M_{2}^{-1}=\left(I+v^{(1)} e_{1}^{T}\right)\left(I+v^{(2)} e_{2}^{T}\right)=I+v^{(1)} e_{1}^{T}+v^{(2)} e_{2}^{T}$.
$>$ Generally,
$M_{1}^{-1} M_{2}^{-1} \cdots M_{k}^{-1}=I+v^{(1)} e_{1}^{T}+v^{(2)} e_{2}^{T}+\cdots v^{(k)} e_{k}^{T}$
The L factor is a lower triangular matrix with ones on the diagonal. Column \boldsymbol{k} of L, contains the multipliers $l_{i k}$ used in the \boldsymbol{k}-th step of Gaussian elimination.

A matrix \boldsymbol{A} has an LU decomposition if

$$
\operatorname{det}(A(1: k, 1: k)) \neq 0 \quad \text { for } \quad k=1, \cdots, n-1
$$

In this case, the determinant of \boldsymbol{A} satisfies:

$$
\operatorname{det} A=\operatorname{det}(U)=\prod_{i=1}^{n} u_{i i}
$$

If, in addition, \boldsymbol{A} is nonsingular, then the LU factorization is unique.
ψ_{4} Practical use: Show how to use the LU factorization to solve linear systems with the same matrix \boldsymbol{A} and different \boldsymbol{b} 's.
(LO 5 LU factorization of the matrix $A=\left(\begin{array}{lll}2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1\end{array}\right)$?
(0) Determinant of \boldsymbol{A} ?
(Trus or false: "Computing the LU factorization of matrix \boldsymbol{A} involves more arithmetic operations than solving a linear system $\boldsymbol{A x}=\boldsymbol{b}$ by Gaussian elimination".

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2	4	4	2					
1	3	1	1					
1	5	6	-6	into:	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
:---:	:---:	:---:	:---:					
$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					
$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}					

row $_{2}:=$ row $_{2}-0.5 \times$ row $_{1}: \quad$ row $_{3}:=$ row $_{3}-0.5 \times$ row $_{1}$:

2	4	4	2
0	1	-1	0
1	5	6	-6

2	4	4	2
0	1	-1	0
0	3	4	-7

Step 2: \begin{tabular}{|ccc|c}
$\mathbf{2}$ \& $\mathbf{4}$ \& $\mathbf{4}$ \& $\mathbf{2}$

$\mathbf{0}$ \& $\mathbf{1}$ \& $-\mathbf{1}$ \& $\mathbf{0}$

$\mathbf{0}$ \& $\mathbf{3}$ \& $\mathbf{4}$ \& $-\mathbf{- 7}$

$|$ into:

\hline \boldsymbol{x} \& $\mathbf{0}$ \& \boldsymbol{x} \& \boldsymbol{x}

$\mathbf{0}$ \& \boldsymbol{x} \& \boldsymbol{x} \& \boldsymbol{x}

$\mathbf{0}$ \& $\mathbf{0}$ \& \boldsymbol{x} \& \boldsymbol{x}
\end{tabular}

row $_{1}:=$ row $_{1}-4 \times$ row $_{2}: \quad$ row $_{3}:=$ row $_{3}-3 \times$ row $_{2}$:

$$
\begin{array}{|ccr|c|}
\hline 2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{array} \quad \left\lvert\, \begin{array}{|rrr|c|}
\hline 2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\hline
\end{array}\right.
$$

There is now a third step:

To transform: \begin{tabular}{|ccc|c}
$\mathbf{2}$ \& $\mathbf{0}$ \& $\mathbf{8}$ \& $\mathbf{2}$

$\mathbf{0}$ \& $\mathbf{1}$ \& $\mathbf{- 1}$ \& $\mathbf{0}$

$\mathbf{0}$ \& $\mathbf{0}$ \& $\mathbf{7}$ \& $-\mathbf{7}$

 into:

\boldsymbol{x} \& $\mathbf{0}$ \& $\mathbf{0}$ \& \boldsymbol{x}

$\mathbf{0}$ \& \boldsymbol{x} \& $\mathbf{0}$ \& \boldsymbol{x}

$\mathbf{0}$ \& $\mathbf{0}$ \& \boldsymbol{x} \& \boldsymbol{x}

\hline
\end{tabular}

$\operatorname{row}_{1}:=\operatorname{row}_{1}-\frac{8}{7} \times$ row $_{3}: \quad \operatorname{row}_{2}:=\operatorname{row}_{2}-\frac{-1}{7} \times$ row $_{3}:$

$$
\begin{array}{|ccc|c|}
\hline 2 & 0 & 0 & 10 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{array} \quad \quad \begin{array}{|ccc|c|}
\hline 2 & 0 & 0 & 10 \\
0 & 1 & 0 & 1 \\
0 & 0 & 7 & -7 \\
\hline
\end{array}
$$

Solution: $x_{3}=-1 ; x_{2}=-1 ; x_{1}=5$

ALGORITHM : 3. Gauss-Jordan elimination

```
1. For \(\boldsymbol{k}=1: \boldsymbol{n}\) Do:
2. For \(\boldsymbol{i}=1: \boldsymbol{n}\) and if \(\boldsymbol{i}!=\boldsymbol{k}\) Do:
3. \(\quad\) ive \(:=a_{i k} / a_{k k}\)
4. For \(j:=k+1: n+1\) Do:
5. \(\quad a_{i j}:=a_{i j}-p i v * a_{k j}\)
6. End
6. End
7. End
```

> Operation count:
$T=\sum_{k=1}^{n} \sum_{i=1}^{n-1}\left[1+\sum_{j=k+1}^{n+1} 2\right]=\sum_{k=1}^{n} \sum_{i=1}^{n-1}(2(n-k)+3)=\cdots$
4_{8} Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?

```
function \(\mathrm{x}=\) gaussj (A, b)
```



```
\% solves A \(\mathrm{x}=\mathrm{b}\) by Gauss-Jordan elimination
\% -
\(\mathrm{n}=\operatorname{size}(\mathrm{A}, 1)\);
\(\mathrm{A}=[\mathrm{A}, \mathrm{b}]\);
for \(\mathrm{k}=1\) : n
for \(\mathrm{i}=1\) : n
            if (i \({ }^{\sim}=k\) )
                                    piv \(=A(i, k) / A(k, k)\);
                                    \(A(i, k+1: n+1)=A(i, k+1: n+1)-p i v * A(k, k+1: n+1)\);
                end
            end
    end
    \(\mathrm{x}=\mathrm{A}(:, \mathrm{n}+1)\)./ \(\operatorname{diag}(\mathrm{A})\);
```


Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

$$
\left\{\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =2 \\
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+4 x_{2}+6 x_{3} & =-5
\end{aligned} \text { Or: } \begin{array}{|ccc|c|}
\hline 2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5 \\
\hline
\end{array}\right.
$$

$$
\operatorname{row}_{2}:=\operatorname{row}_{2}-\frac{1}{2} \times \operatorname{row}_{1}: \quad \operatorname{row}_{3}:=\operatorname{row}_{3}-\frac{1}{2} \times \operatorname{row}_{1}:
$$

$$
\begin{array}{|rrr|c|}
\hline 2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
1 & 4 & 6 & -5 \\
\hline
\end{array}
$$

$>$ Pivot \boldsymbol{a}_{22} is zero. Solution: permute rows 2 and 3 :

2	2	4	2
0	0	-1	0
0	3	4	-6

2	2	4	2
0	3	4	-6
0	0	-1	0

Gaussian Elimination with Partial Pivoting

Partial Pivoting

$>$ General situation:

Always permute row \boldsymbol{k} with row l such that

$$
\left|a_{l k}\right|=\max _{i=k, \ldots, n}\left|a_{i k}\right|
$$

More 'stable’ algorithm.

```
    function x = gaussp (A, b)
    %----------------------------
    solves A x = b by Gaussian elimination with
    partial pivoting/
    n = size(A,1) ;
    A = [A,b]
    for k=1:n-1
            [t, ip] = max(abs(A(k:n,k)));
    ip = ip+k-1 ;
%% swap
            temp = A(k,k:n+1) ;
            A(k,k:n+1) = A(ip,k:n+1);
            A(ip,k:n+1) = temp;
            for i=k+1:n
            piv = A(i,k) / A(k,k) ;
            A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
            end
    end
    x = backsolv(A,A(:,n+1));
3-28

\section*{Pivoting and permutation matrices}
- A permutation matrix is a matrix obtained from the identity matrix by permuting its rows
\(>\) For example for the permutation \(\pi=\{3,1,4,2\}\) we obtain
\[
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
\]
\(>\) Important observation: the matrix \(\boldsymbol{P} \boldsymbol{A}\) is obtained from \(\boldsymbol{A}\) by permuting its rows with the permutation \(\pi\)
\[
(\boldsymbol{P} \boldsymbol{A})_{i,:}=\boldsymbol{A}_{\pi(i),:}
\]
\(\Leftrightarrow 0\) What is the matrix \(\boldsymbol{P A}\) when
\[
P=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{array}\right) ?
\]
> Any permutation matrix is the product of interchange permutations, which only swap two rows of \(\boldsymbol{I}\).
\(>\) Notation: \(\boldsymbol{E}_{i j}=\) Identity with rows \(i\) and \(j\) swapped

\section*{Example: To obtain \(\pi=\{3,1,4,2\}\) from \(\pi=\{1,2,3,4\}\)} - we need to swap \(\pi(2) \leftrightarrow \pi(3)\) then \(\pi(3) \leftrightarrow \pi(4)\) and finally \(\pi(1) \leftrightarrow \pi(2)\). Hence:
\[
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=\boldsymbol{E}_{1,2} \times \boldsymbol{E}_{3,4} \times \boldsymbol{E}_{2,3}
\]
\(\Delta_{10}\) In the previous example where

Matlab gives \(\operatorname{det}(A)=-896\). What is \(\operatorname{det}(P A) ?\)
> At each step of G.E. with partial pivoting:
\[
M_{k+1} E_{k+1} A_{k}=A_{k+1}
\]
where \(\boldsymbol{E}_{\boldsymbol{k + 1}}\) encodes a swap of row \(\boldsymbol{k}+\mathbf{1}\) with row \(\boldsymbol{l}>\boldsymbol{k}+\mathbf{1}\).
\(>\) Notes: (1) \(\boldsymbol{E}_{i}^{-1}=\boldsymbol{E}_{i}\) and (2) \(\boldsymbol{M}_{j}^{-1} \times \boldsymbol{E}_{k+1}=\boldsymbol{E}_{k+1} \times \tilde{\boldsymbol{M}}_{j}^{-1}\) for \(\boldsymbol{k} \geq \boldsymbol{j}\), where \(\tilde{\boldsymbol{M}}_{\boldsymbol{j}}\) has a permuted Gauss vector:
\[
\begin{aligned}
\left(I+v^{(j)} e_{j}^{T}\right) E_{k+1} & =E_{k+1}\left(I+E_{k+1} v^{(j)} e_{j}^{T}\right) \\
& \equiv E_{k+1}\left(I+\tilde{v}^{(j)} e_{j}^{T}\right) \\
& \equiv E_{k+1} \tilde{M}_{j}
\end{aligned}
\]
\(>\) Here we have used the fact that above row \(k+1\), the permutation matrix \(\boldsymbol{E}_{\boldsymbol{k + 1}}\) looks just like an identity matrix.

Result:
\[
\begin{aligned}
A_{0} & =E_{1} M_{1}^{-1} A_{1} \\
& =E_{1} M_{1}^{-1} E_{2} M_{2}^{-1} A_{2}=E_{1} E_{2} \tilde{M}_{1}^{-1} M_{2}^{-1} A_{2} \\
& =E_{1} E_{2} \tilde{M}_{1}^{-1} M_{2}^{-1} E_{3} M_{3}^{-1} A_{3} \\
& =E_{1} E_{2} E_{3} \tilde{M}_{1}^{-1} \tilde{M}_{2}^{-1} M_{3}^{-1} A_{3} \\
& =\cdots \\
& =E_{1} \cdots E_{n-1} \times \tilde{M}_{1}^{-1} \tilde{M}_{2}^{-1} \tilde{M}_{3}^{-1} \cdots \tilde{M}_{n-1}^{-1} \times A_{n-1}
\end{aligned}
\]

In the end
\[
P A=L U \text { with } P=E_{n-1} \cdots E_{1}
\]

\section*{Special case of banded matrices}
> Banded matrices arise in many applications
\(>\boldsymbol{A}\) has upper bandwidth \(\boldsymbol{q}\) if \(a_{i j}=0\) for \(j-i>q\)
\(>\boldsymbol{A}\) has lower bandwidth \(p\) if \(a_{i j}=0\) for \(i-j>p\)

\(>\) Simplest case: tridiagonal \(>p=q=1\).
> First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:
2. For \(i=2: n\) Do:
3.
\(a_{i 1}:=a_{i 1} / a_{11}\) (pivots)
4. For \(\boldsymbol{j}:=2: n\) Do:
5.
\(a_{i j}:=a_{i j}-a_{i 1} * a_{1 j}\)
6. End
7. End

If \(\boldsymbol{A}\) has upper bandwidth \(\boldsymbol{q}\) and lower bandwidth \(\boldsymbol{p}\) then so is the resulting \([\boldsymbol{L} / \boldsymbol{U}]\) matrix. \(>\) Band form is preserved (induction)
\(\Delta_{11}\) Operation count?

\section*{What happens when partial pivoting is used?}

If \(\boldsymbol{A}\) has lower bandwidth \(\boldsymbol{p}\), upper bandwidth \(\boldsymbol{q}\), and if Gaussian elimination with partial pivoting is used, then the resulting \(U\) has upper bandwidth \(\boldsymbol{p}+\boldsymbol{q} . \boldsymbol{L}\) has at most \(\boldsymbol{p}+1\) nonzero elements per column (bandedness is lost).
\(>\) Simplest case: tridiagonal \(>p=q=1\).
Example:
\[
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{array}\right)
\]```

