ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS

- Conditioning of linear systems.
- Estimating errors for solutions of linear systems
- (Normwise) Backward error analysis
- Estimating condition numbers ..

Question addressed by perturbation analysis: determine the variation of the solution \boldsymbol{x} when the data, namely \boldsymbol{A} and \boldsymbol{b}, undergoes small variations. Problem is III-conditioned if small variations in data cause very large variation in the solution.

Setting:

$>$ We perturb \boldsymbol{A} into $\boldsymbol{A}+\boldsymbol{E}$ and \boldsymbol{b} into $\boldsymbol{b}+\boldsymbol{e}_{b}$. Can we bound the resulting change (perturbation) to the solution?
Preparation: We begin with a lemma for a simple case
\qquad
\qquad
d) $(\boldsymbol{I}-\boldsymbol{E})^{-1}=\lim _{k \rightarrow \infty} \sum_{i=0}^{k} \boldsymbol{E}^{i}$. We write this as

$$
(I-E)^{-1}=\sum_{i=0}^{\infty} E^{i}
$$

e) Finally:

$$
\begin{aligned}
\left\|(\boldsymbol{I}-\boldsymbol{E})^{-1}\right\| & =\left\|\lim _{k \rightarrow \infty} \sum_{i=0}^{k} \boldsymbol{E}^{i}\right\|=\lim _{k \rightarrow \infty}\left\|\sum_{i=0}^{k} \boldsymbol{E}^{i}\right\| \\
& \leq \lim _{k \rightarrow \infty} \sum_{i=0}^{k}\left\|\boldsymbol{E}^{i}\right\| \leq \lim _{k \rightarrow \infty} \sum_{i=0}^{k}\|\boldsymbol{E}\|^{i} \\
& \leq \frac{1}{1-\|\boldsymbol{E}\|}
\end{aligned}
$$

Can generalize result:
LEMMA: If \boldsymbol{A} is nonsingular and $\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{E}\|<1$ then $\boldsymbol{A}+\boldsymbol{E}$ is non-singular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

$>$ Proof is based on relation $\boldsymbol{A}+\boldsymbol{E}=\boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{-1} \boldsymbol{E}\right)$ and use of previous lemma.
> Now we can prove the main theorem:
THEOREM 1: Assume that $(\boldsymbol{A}+\boldsymbol{E}) \boldsymbol{y}=\boldsymbol{b}+\boldsymbol{e}_{\boldsymbol{b}}$ and $\boldsymbol{A x}=\boldsymbol{b}$ and that $\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{E}\|<1$. Then $\boldsymbol{A}+\boldsymbol{E}$ is nonsingular and

$$
\frac{\|x-y\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|A\|}{1-\left\|A^{-1}\right\|\|E\|}\left(\frac{\|E\|}{\|A\|}+\frac{\left\|e_{b}\right\|}{\|b\|}\right)
$$

The quantity $\kappa(A)=\|A\|\left\|A^{-1}\right\|$ is called the condition number of the linear system with respect to the norm $\|\cdot\|$. When using the p-norms we write:

$$
\kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}
$$

$>$ Note: $\kappa_{2}(A)=\sigma_{\max }(A) / \sigma_{\min }(A)=$ ratio of largest to smallest singular values of \boldsymbol{A}. Allows to define $\kappa_{2}(\boldsymbol{A})$ when \boldsymbol{A} is not square.
$>$ Determinant ${ }^{*}$ is not ${ }^{*}$ a good indication of sensitivity
> Small eigenvalues *do not* always give a good indication of poor conditioning.

Proof: From $(\boldsymbol{A}+\boldsymbol{E}) \boldsymbol{y}=\boldsymbol{b}+\boldsymbol{e}_{\boldsymbol{b}}$ and $\boldsymbol{A x}=\boldsymbol{b}$ we get $(\boldsymbol{A}+\boldsymbol{E})(\boldsymbol{y}-\boldsymbol{x})=e_{b}-\boldsymbol{E} \boldsymbol{x}$. Hence:

$$
y-x=(A+E)^{-1}\left(e_{b}-E x\right)
$$

Taking norms $\rightarrow\|y-x\| \leq\left\|(\boldsymbol{A}+\boldsymbol{E})^{-1}\right\|\left[\left\|e_{b}\right\|+\|\boldsymbol{E}\|\|x\|\right]$ Dividing by $\|x\|$ and using result of lemma

$$
\begin{aligned}
\frac{\|y-x\|}{\|x\|} & \leq\left\|(A+E)^{-1}\right\|\left[\left\|e_{b}\right\| /\|x\|+\|E\|\right] \\
& \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}\left[\left\|e_{b}\right\| /\|x\|+\|E\|\right] \\
& \leq \frac{\left\|A^{-1}\right\|\|A\|}{1-\left\|A^{-1}\right\|\|E\|}\left[\frac{\left\|e_{b}\right\|}{\|A\|\|x\|}+\frac{\|E\|}{\|\boldsymbol{A}\|}\right]
\end{aligned}
$$

Result follows by using inequality $\|A\|\|x\| \geq\|b\| \ldots$.
\qquad
${ }^{5-6}$

Example: Consider, for a large $\boldsymbol{\alpha}$, the $\boldsymbol{n} \times \boldsymbol{n}$ matrix

$$
A=I+\alpha e_{1} e_{n}^{T}
$$

$>$ Inverse of \boldsymbol{A} is : $\boldsymbol{A}^{-1}=I-\alpha e_{1} e_{n}^{T}>$ For the ∞-norm we have

$$
\|A\|_{\infty}=\left\|A^{-1}\right\|_{\infty}=1+|\alpha|
$$

so that $\quad \kappa_{\infty}(A)=(1+|\alpha|)^{2}$.
> Can give a very large condition number for a large α - but all the eigenvalues of \boldsymbol{A} are equal to one.

Show that $\kappa(I)=1$;Show that $\kappa(A) \geq 1$;Show that $\kappa(A)=\kappa\left(A^{-1}\right)$Show that for $\alpha \neq 0$, we have $\kappa(\alpha A)=\kappa(A)$

Simplification when $e_{b}=0: \quad$ Simplification when $\boldsymbol{E}=0$:
$\frac{\|x-y\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|E\|}{1-\left\|A^{-1}\right\|\|E\|} \quad \frac{\|x-y\|}{\|x\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\left\|e_{b}\right\|}{\|b\|}$
$>$ Slightly less general form: Assume that $\|E\| /\|A\| \leq \delta$ and $\left\|e_{b}\right\| /\|b\| \leq \delta$ and $\delta \kappa(A)<1$ then

$$
\frac{\|x-y\|}{\|x\|} \leq \frac{2 \delta \kappa(A)}{1-\delta \kappa(A)}
$$Show the above result

\qquad
${ }^{5-10}$

Normwise backward error

$>$ We solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and find an approximate solution \boldsymbol{y}
Question: Find smallest perturbation to apply to $\boldsymbol{A}, \boldsymbol{b}$ so that *exact* solution of perturbed system is \boldsymbol{y}

Results to be seen later are of this type.

Normwise backward error in just A or b

Suppose we model entire perturbation in RHS \boldsymbol{b}

$>$ Let $r=b-A y$ be the residual.
Then y satisfies $A y=b+\Delta b$ with $\Delta b=-r$ exactly.
$>$ The relative perturbation to the RHS is $\frac{\|r\|}{\|b\|}$.

Suppose we model entire perturbation in matrix \boldsymbol{A}.

$>$ Then \boldsymbol{y} satisfies $\left(\boldsymbol{A}+\frac{r y^{T}}{y^{T} y}\right) \boldsymbol{y}=\boldsymbol{b}$
$>$ The relative perturbation to the matrix is

$$
\left\|\frac{\boldsymbol{r} \boldsymbol{y}^{T}}{\boldsymbol{y}^{T} \boldsymbol{y}}\right\|_{2} /\|\boldsymbol{A}\|_{2}=\frac{\|\boldsymbol{r}\|_{2}}{\|\boldsymbol{A}\|\|\boldsymbol{y}\|_{2}}
$$

\boldsymbol{y} is given (a computed solution). \boldsymbol{E} and e_{b} to be selected (most likely 'directions of perturbation for \boldsymbol{A} and \boldsymbol{b}^{\prime}).
$>$ Typical choice: $\boldsymbol{E}=\boldsymbol{A}, \boldsymbol{e}_{b}=\boldsymbol{b}$Explain why this is not unreasonable
Let $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A y}$. Then we have:
THEOREM 3: $\eta_{E, e_{b}}(y)=\frac{\|r\|}{\|E\|\|y\|+\left\|e_{b}\right\|}$
Normwise backward error is for case $\boldsymbol{E}=\boldsymbol{A}, e_{b}=\boldsymbol{b}$:

$$
\eta_{A, b}(y)=\frac{\|r\|}{\|A\|\|y\|+\|b\|}
$$

For a given \boldsymbol{y} and given perturbation directions $\boldsymbol{E}, \boldsymbol{e}_{\boldsymbol{b}}$, we define the Normwise backward error:

$$
\begin{array}{r}
\eta_{E, e_{b}}(y)=\min \{\epsilon \mid(A+\Delta A) y=b+\Delta b ; \\
\text { where } \Delta A, \Delta b \quad \text { satisfy: }\|\Delta A\| \\
\text { and } \quad\|\Delta b\|
\end{array} \begin{aligned}
& \left.\leq \epsilon\left\|e_{b}\right\|\right\}
\end{aligned}
$$

In other words $\eta_{E, e_{b}}(\boldsymbol{y})$ is the smallest ϵ for which

$$
\text { (1) } \begin{cases}(A+\Delta A) y= & b+\Delta b ; \\ \|\Delta A\| \leq \epsilon\|E\| ; & \|\Delta b\| \leq \epsilon\left\|e_{b}\right\|\end{cases}
$$

5-14
$\triangle \Delta_{7}$ Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.
(0_{8} Consider the 6×6 Vandermonde system $A x=b$ where $a_{i j}=j^{2(i-1)}, \boldsymbol{b}=\boldsymbol{A} *[1,1, \cdots, 1]^{T}$. We perturb A by E, with $|E| \leq 10^{-10}|A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.

Estimating condition numbers.

> Often we just want to get a lower bound for condition number [it is 'worse than ...']
$>$ We want to estimate $\|A\|\left\|A^{-1}\right\|$.
$>$ The norm $\|A\|$ is usually easy to compute but $\left\|\boldsymbol{A}^{-1}\right\|$ is not.
$>$ We want: Avoid the expense of computing \boldsymbol{A}^{-1} explicitly.

Idea:

$>$ Select a vector \boldsymbol{v} so that $\|v\|=1$ but $\|\boldsymbol{v}\| \|=\tau$ is small.
$>$ Then: $\left\|A^{-1}\right\| \geq 1 / \tau$ (show why) and:

$$
\kappa(A) \geq \frac{\|A\|}{\tau}
$$

Condition numbers and near-singularity
$>1 / \kappa \approx$ relative distance to nearest singular matrix.
Let $\boldsymbol{A}, \boldsymbol{B}$ be two $\boldsymbol{n} \times \boldsymbol{n}$ matrices with \boldsymbol{A} nonsingular and \boldsymbol{B} singular. Then

$$
\frac{1}{\kappa(A)} \leq \frac{\|A-B\|}{\|A\|}
$$

Proof: B singular $\rightarrow \exists x \neq 0$ such that $B \boldsymbol{x}=0$.

$$
\|x\|=\left\|A^{-1} A x\right\| \leq\left\|A^{-1}\right\|\|A x\|=\left\|A^{-1}\right\|\|(A-B) x\|
$$

$$
\leq\left\|A^{-1}\right\|\|A-B\|\|x\|
$$

Divide both sides by $\|x\| \times \kappa(A)=\|x\|\|A\|\left\|A^{-1}\right\|>$ result. QED.

Condition number worse than $\|A\| / \tau$.
$>$ Typical choice for v : choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back-substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.

- Similar techniques used to estimate condition numbers of large matrices in matlab.
5-18

Example:

$$
\text { let } A=\left(\begin{array}{cc}
1 & 1 \\
1 & 0.99
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Then $\frac{1}{\kappa_{1}(A)} \leq \frac{0.01}{2}>\kappa_{1}(A) \geq \frac{2}{0.01}=200$.
$>$ It can be shown that (Kahan)

$$
\frac{1}{\kappa(A)}=\min _{B}\left\{\left.\frac{\|A-B\|}{\|A\|} \quad \right\rvert\, \quad \operatorname{det}(B)=0\right\}
$$

Estimating errors from residual norms

Let $\tilde{\boldsymbol{x}}$ an approximate solution to system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ (e.g., computed from an iterative process). We can compute the residual norm:

$$
\|r\|=\|b-A \tilde{x}\|
$$

Question: How to estimate the error $\|x-\tilde{x}\|$ from $\|r\|$?
> One option is to use the inequality

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|} .
$$

$>$ We must have an estimate of $\boldsymbol{\kappa}(\boldsymbol{A})$.

$$
\text { First, note that } A(x-\tilde{x})=b-A \tilde{x}=r \text {. So: }
$$

$$
\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\|\|r\|
$$

Also note that from the relation $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$, we get

$$
\|b\|=\|A x\| \leq\|A\|\|x\| \quad \rightarrow \quad\|x\| \geq \frac{\|b\|}{\|A\|}
$$

Therefore,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|r\|}{\|b\| /\|A\|}=\kappa(A) \frac{\|r\|}{\|b\|}
$$

\square

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}
$$

