Least-Squares Systems and The QR factorization

• Orthogonality

- Least-squares systems.
- The Gram-Schmidt and Modified Gram-Schmidt processes.
- The Householder QR and the Givens QR.

Orthogonality

- 1. Two vectors u and v are orthogonal if (u, v) = 0.
- 2. A system of vectors $\{v_1, \ldots, v_n\}$ is orthogonal if $(v_i, v_j) = 0$ for $i \neq j$; and orthonormal if $(v_i, v_j) = \delta_{ij}$

3. A matrix is orthogonal if its columns are orthonormal

Notation: $V = [v_1, \dots, v_n] ==$ matrix with column-vectors v_1, \dots, v_n .

> Orthogonality is essential in understanding and solving least-squares problems.

$Least-Squares\ systems$

For Given: an $m \times n$ matrix n < m. Problem: find x which minimizes:

7-1

 $\|b-Ax\|_2$

Good illustration: Data fitting.

Typical problem of data fitting: We seek an unknwon function as a linear combination ϕ of n known functions ϕ_i (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures β_1, \ldots, β_m of this unknown function at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation ϕ to this data.

 $\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$, s.t. $\phi(t_j) pprox eta_j, j = 1, \dots, m$

7-3

GvL 5, 5.3 – QR

Question: Close in what sense?

• Least-squares approximation: Find ϕ such that

 $\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$, & $\sum_{j=1}^m |\phi(t_j) - eta_j|^2 = {\sf Min}$

7-2

> In linear algebra terms: find 'best' approximation to a vector b from linear combinations of vectors f_i , $i = 1, \ldots, n$, where

$$b = egin{pmatrix} eta_1\ eta_2\ dots\ eta_m\end{pmatrix}, \quad f_i = egin{pmatrix} \phi_i(t_1)\ \phi_i(t_2)\ dots\ \phi_i(t_m)\end{pmatrix}$$

7-4

GvL 5, 5.3 – QR

 \blacktriangleright We want to find $x = \{\xi_i\}_{i=1,...,n}$ such that

$$\left\|\sum_{i=1}^n \xi_i f_i - b
ight\|_2$$
 Minimum

Define

$$F = [f_1, f_2, \dots, f_n], \hspace{1em} x = egin{pmatrix} \xi_1 \ dots \ \xi_n \end{pmatrix}$$

> We want to find x to minimize $\|b - Fx\|_2$

> This is a Least-squares linear system: F is $m \times n$, with $m \ge n$.

Formulate the least-squares system for the problem of finding the polynomial of degree 2 that approximates a function f which satisfies f(-1) = -1; f(0) = 1; f(1) = 2; f(2) = 0

7-5

Solution: $\phi_1(t) = 1; \quad \phi_2(t) = t; \quad \phi_2(t) = t^2;$

• Evaluate the ϕ_i 's at points $t_1 = -1; t_2 = 0; t_3 = 1; t_4 = 2$:

$$f_1=egin{pmatrix} 1\ 1\ 1\ 1\end{pmatrix} \quad f_2=egin{pmatrix} -1\ 0\ 1\ 2\end{pmatrix} \quad f_3=egin{pmatrix} 1\ 0\ 1\ 4\end{pmatrix} \quad o$$

> So the coefficients ξ_1, ξ_2, ξ_3 of the polynomial $\xi_1 + \xi_2 t + \xi_3 t^2$ are the solution of the least-squares problem min ||b - Fx|| where:

$$F = egin{pmatrix} 1 & -1 & 1 \ 1 & 0 & 0 \ 1 & 1 & 1 \ 1 & 2 & 4 \end{pmatrix} \quad b = egin{pmatrix} -1 \ 1 \ 2 \ 0 \ \end{pmatrix}$$

7-6

THEOREM. The vector x_* minimizes $\psi(x) = \|b - Fx\|_2^2$ if and only if it is the solution of the normal equations:

 $F^T F x = F^T b$

Proof: Expand out the formula for $\psi(x_* + \delta x)$:

$$egin{aligned} \psi(x_*+\delta x) &= ((b-Fx_*)-F\delta x)^T((b-Fx_*)-F\delta x)^T(b-Fx_*)-F\delta x^T(b-Fx_*)+(F\delta x)^T(F\delta x$$

Can see that $\psi(x_* + \delta x) \ge \psi(x_*)$ for any δx , iff the boxed quantity [the gradient vector] is zero. Q.E.D.

7-7

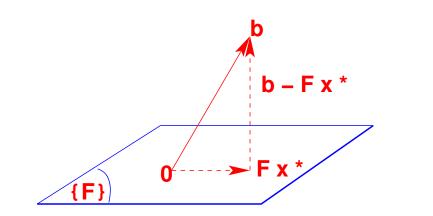
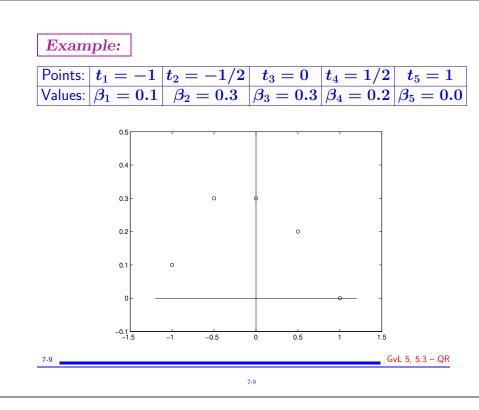


Illustration of theorem: x^* is the best approximation to the vector b from the subspace span $\{F\}$ if and only if $b - Fx^*$ is \bot to the whole subspace span $\{F\}$. This in turn is equivalent to $F^T(b - Fx^*) = 0 \triangleright$ Normal equations.

7-8

GvL 5, 5.3 – QR

GvL 5, 5.3 – QR

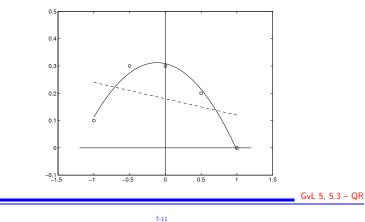


2) Approximation by polynomials of degree 2:

- ▶ $\phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2$.
- > Best polynomial found:

7-11

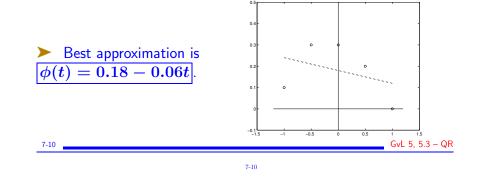
 $0.3085714285 - 0.06 \times t - 0.2571428571 \times t^2$



1) Approximations by polynomials of degree one:

$$\blacktriangleright ~ \phi_1(t)=1, \phi_2(t)=t$$

$$F = egin{pmatrix} 1.0 & -1.0 \ 1.0 & -0.5 \ 1.0 & 0 \ 1.0 & 0.5 \ 1.0 & 1.0 \ \end{pmatrix} \qquad egin{pmatrix} F^T F = egin{pmatrix} 5.0 & 0 \ 0 & 2.5 \ 0 & 2.5 \ -0.15 \ \end{pmatrix} \ F^T b = egin{pmatrix} 0.9 \ -0.15 \ \end{pmatrix}$$



Problem with Normal Equations

 \blacktriangleright Condition number is high: if A is square and non-singular, then

 $\kappa_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2 = \sigma_{\max} / \sigma_{\min}$ $\kappa_2(A^TA) = \|A^TA\|_2 \cdot \|(A^TA)^{-1}\|_2 = (\sigma_{\max}/\sigma_{\min})^2$

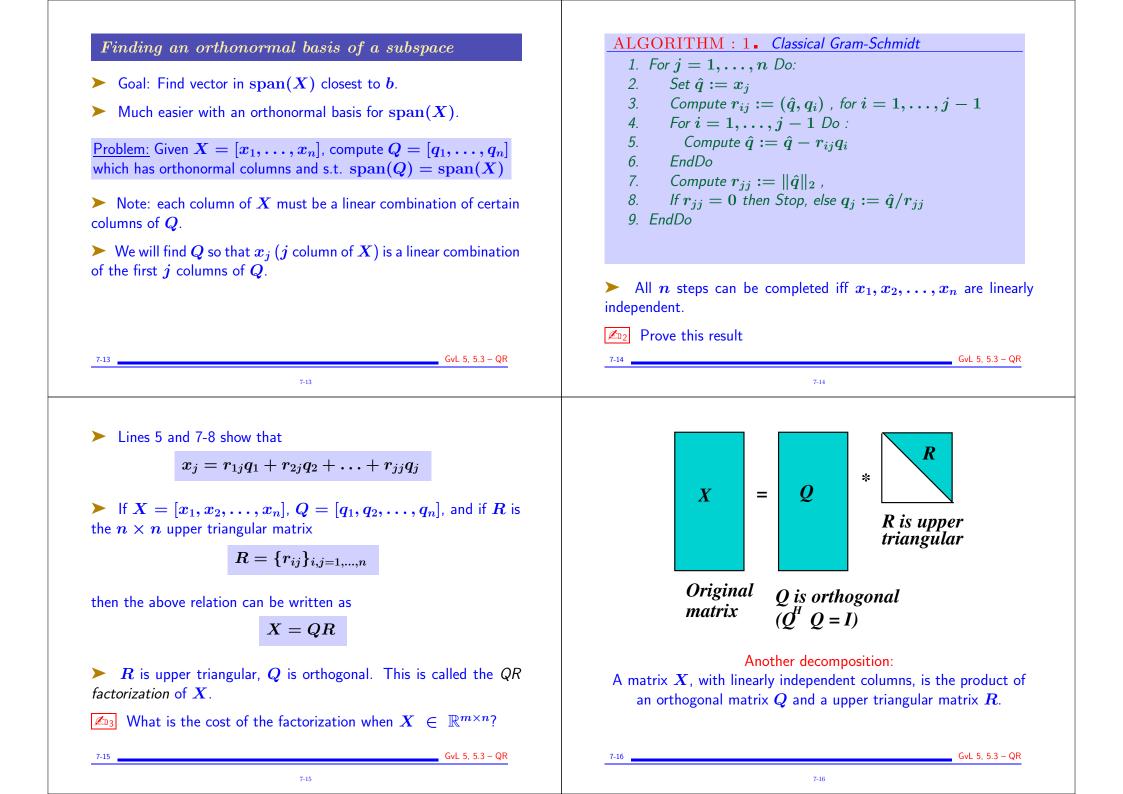
> Example: Let $A = \begin{pmatrix} 1 & 1 & -\epsilon \\ \epsilon & 0 & 1 \\ 0 & \epsilon & 1 \end{pmatrix}$.

$$\blacktriangleright$$
 Then $\kappa(A) = \sqrt{2}/\epsilon$, but $\kappa(A^TA) = 2\epsilon^{-2}$

$$fl(A^T A) = fl \begin{pmatrix} 1+\epsilon^2 & 1 & 0\\ 1 & 1+\epsilon^2 & 0\\ 0 & 0 & 2+\epsilon^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\ 1 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$

is singular to working precision (if $\epsilon < \underline{\mathbf{u}}$).

7-12



Better algorithm: Modified Gram-Schmidt.

4. $r_{ij} := (\hat{q}, q_i)$ 5. $\hat{q} := \hat{q} - r_{ij}q_i$ 6. EndDo 7. Compute $r_{jj} := \hat{q} _2$, 8. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$ 9. EndDo hy difference: inner product uses the accumulated subsum instead original \hat{q}			GvL 5, 5.3 – Q	R	7-18
5. $\hat{q} := \hat{q} - r_{ij}q_i$ 6. EndDo 7. Compute $r_{jj} := \hat{q} _2$, 8. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$		s the accumulated s	subsum inste	ead	
5. $\hat{q} := \hat{q} - r_{ij}q_i$ 6. EndDo 7. Compute $r_{jj} := \hat{q} _2$, 8. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$					
5. $\hat{q} := \hat{q} - r_{ij}q_i$ 6. EndDo 7. Compute $r_{jj} := \ \hat{q}\ _2$,		ise $q_j := q/r_{jj}$			
5. $\hat{q} := \hat{q} - r_{ij}q_i$ 6. EndDo					
5. $\hat{q} := \hat{q} - r_{ij}q_i$					
4. $r_{ij}:=(\hat{q},q_i)$					
					_
$2.$ Define $q := \omega_j$	- 5	Do:			where vecto

Modified Gram-Schmidt algorithm is much more stable the classical Gram-Schmidt in general.

Suppose MGS is applied to A yielding computed matrices \hat{Q} and \hat{R} . Then there are constants c_i (depending on (m, n)) such that

$$egin{array}{ll} A+E_1=ar{Q}ar{R} & \|E_1\|_2\leq c_1 \ \underline{\mathrm{u}} & \|A\|_2 \ \hat{Q}^T\hat{Q}-I\|_2\leq c_2 \ \underline{\mathrm{u}} & \kappa_2(A)+O((\underline{\mathrm{u}}\,\kappa_2(A))^2) \end{array}$$

for a certain perturbation matrix $oldsymbol{E}_1$, and there exists an orthonormal matrix $oldsymbol{Q}$ such that

 $A+E_2=Q\hat{R} ~~ \|E_2(:,j)\|_2 \leq c_3 {f u} \, \|A(:,j)\|_2$

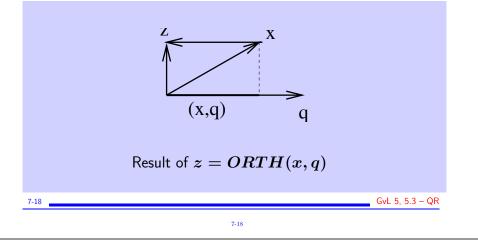
7-19

for a certain perturbation matrix E_2 .

The operations in lines 4 and 5 can be written as

$$\hat{q} := ORTH(\hat{q}, q_i)$$

where ORTH(x,q) denotes the operation of orthogonalizing a vector x against a unit vector q.



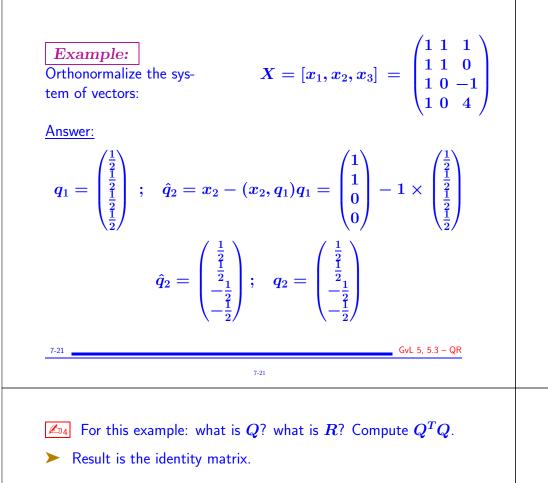
An equivalent version:

ALGORITHM : 3. Modified Gram-Schmidt - 2 -

0. Set $\hat{Q} := X$ 1. For i = 1, ..., n Do: 2. Compute $r_{ii} := ||\hat{q}_i||_2$, 3. If $r_{ii} = 0$ then Stop, else $q_i := \hat{q}_i/r_{ii}$ 4. For j = i + 1, ..., n, Do: 5. $r_{ij} := (\hat{q}_j, q_i)$ 6. $\hat{q}_j := \hat{q}_j - r_{ij}q_i$ 7. EndDo 8. EndDo

Does exactly the same computation as previous algorithm, but in a different order.

7-20

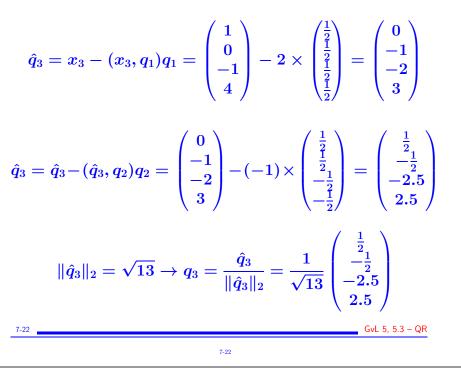


Recall: For any orthogonal matrix Q, we have

 $Q^TQ = I$

(In complex case: $Q^HQ = I$). Consequence: For an $n \times n$ orthogonal matrix $Q^{-1} = Q^T$ (Q is orthogonal/ unitary)

7-23



Use of the QR factorization

Problem: $Ax \approx b$ in least-squares sense

A is an m imes n (full-rank) matrix. Let

A=QR

the QR factorization of \boldsymbol{A} and consider the normal equations:

$$A^T A x = A^T b \rightarrow R^T Q^T Q R x = R^T Q^T b \rightarrow R^T R x = R^T Q^T b \rightarrow R x = Q^T b$$

 $(\mathbf{R}^T \text{ is an } \mathbf{n} imes \mathbf{n} \text{ nonsingular matrix})$. Therefore,

$$x = R^{-1}Q^Tb$$

7-24

7-23

Another derivation:

- $\succ \text{ Recall: } \operatorname{span}(Q) = \operatorname{span}(A)$
- \blacktriangleright So $\|b Ax\|_2$ is minimum when $b Ax \perp \mathrm{span}\{Q\}$
- \blacktriangleright Therefore solution x must satisfy $Q^T(b-Ax)=0
 ightarrow$

$$Q^T(b-QRx)=0
ightarrow Rx=Q^Tb$$

 $x = R^{-1}Q^T b$

Also observe that for any vector $oldsymbol{w}$

$$w = QQ^Tw + (I - QQ^T)w$$

and that
$$QQ^Tw \perp (I - QQ^T)w \rightarrow$$

 \blacktriangleright Pythagoras
theorem \longrightarrow $\|w\|_2^2 = \|QQ^Tw\|_2^2 + \|(I - QQ^T)w\|_2^2$

$$\begin{split} \|b - Ax\|^2 &= \|b - QRx\|^2 \\ &= \|(I - QQ^T)b + Q(Q^Tb - Rx)\|^2 \\ &= \|(I - QQ^T)b\|^2 + \|Q(Q^Tb - Rx)\|^2 \\ &= \|(I - QQ^T)b\|^2 + \|Q^Tb - Rx\|^2 \end{split}$$

Min is reached when 2nd term of r.h.s. is zero.

Method:

- Compute the QR factorization of A, A = QR.
- Compute the right-hand side $f = Q^T b$
- Solve the upper triangular system Rx = f.
- \boldsymbol{x} is the least-squares solution

> As a rule it is not a good idea to form $A^T A$ and solve the normal equations. Methods using the QR factorization are better.

7-25

\swarrow_{15} Total cost?? (depends on the algorithm used to get the QR decomposition).

Using matlab find the parabola that fits the data in previous data fitting example (p. 7-9) in L.S. sense [verify that the result found is correct.]

7-27

Application: another method for solving linear systems.

Ax = b

7-26

A is an n imes n nonsingular matrix. Compute its QR factorization.

 \blacktriangleright Multiply both sides by $Q^T
ightarrow Q^T QRx = Q^Tb
ightarrow$

$$Rx = Q^T b$$

7-28

Method:

- > Compute the QR factorization of A, A = QR.
- > Solve the upper triangular system $Rx = Q^T b$.

∠₁₇ Cost??

GvL 5, 5.3 – QR

GvL 5, 5.3 – QR