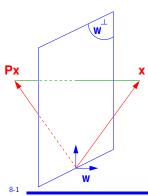
The Householder QR

Householder reflectors are matrices of the form

$$P = I - 2ww^T,$$

where w is a unit vector (a vector of 2-norm unity)



Geometrically, $\boldsymbol{P} \boldsymbol{x}$ represents a mirror image of x with respect to the hyperplane span $\{w\}^{\perp}$.

A few simple properties:

- For real w: P is symmetric It is also orthogonal ($P^TP = I$).
- ullet In the complex case $P=I-2ww^H$ is Hermitian and unitary.
- P can be written as $P = I \beta v v^T$ with $\beta = 2/\|v\|_2^2$, where v is a multiple of w. [storage: v and β]
- Px can be evaluated $x \beta(x^Tv) \times v$ (op count?)
- ullet Similarly: $PA = A vz^T$ where $z^T = eta * v^T * A$
- \triangleright NOTE: we work in \mathbb{R}^m , so all vectors are of length m, P is of size $m \times m$, etc.
- Next: we will solve a problem that will provide the basic ingredient of the Householder QR factorization.

Problem 1: Given a vector $x \neq 0$, find w such that

$$(I-2ww^T)x=\alpha e_1,$$

where α is a (free) scalar.

Writing $(I - \beta v v^T)x = \alpha e_1$ yields $\beta(v^T x) v = x - \alpha e_1$.

- \triangleright Desired w is a multiple of $x-\alpha e_1$, i.e., we can take :
- $v = x \alpha e_1$
- - To determine lpha recall that $\|(I-2ww^T)x\|_2 = \|x\|_2$
- ightharpoonup As a result: $|\alpha| = \|x\|_2$, or $\alpha = \pm \|x\|_2$
- Should verify that both signs work, i.e., that in both cases we indeed get $Px = \alpha e_1$ [exercise]

 \swarrow_{1} .. Show that $(I - \beta vv^T)x = \alpha e_1$ when $v = x - \alpha e_1$ and $\alpha = \pm ||x||_2.$

Q: Which sign is best? To reduce cancellation, the resulting $x-\alpha e_1$ should not be small. So, $\alpha = -\mathrm{sign}(\xi_1) \|x\|_2$, where $\xi_1 = e_1^T x$

$$v=x+ ext{sign}(\xi_1)\|x\|_2e_1$$
 and $eta=2/\|v\|_2^2$

$$v=egin{pmatrix} \hat{\xi}_1\ \xi_2\ dots\ oldsymbol{\xi}_{m-1}\ oldsymbol{\xi}_m \end{pmatrix} \quad ext{with} \quad \hat{\xi}_1=egin{cases} oldsymbol{\xi}_1+\|x\|_2 & ext{if } oldsymbol{\xi}_1>0\ oldsymbol{\xi}_1-\|x\|_2 & ext{if } oldsymbol{\xi}_1\leq 0 \end{cases}$$

 \triangleright OK, but will yield a negative multiple of e_1 if $\xi_1 > 0$.

GvL 5.1 - HouQR

Alternative:

- ightharpoonup Define $\sigma = \sum_{i=2}^m \xi_i^2$.
- ightharpoonup Always set $\hat{\xi}_1 = \xi_1 \|x\|_2$. Update OK when $\xi_1 \leq 0$
- ightharpoonup When $\xi_1>0$ compute \hat{x}_1 as

$$\hat{\xi_1} = \xi_1 - \|x\|_2 = rac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = rac{-\sigma}{\xi_1 + \|x\|_2}$$

So:
$$\hat{\xi}_1 = egin{cases} rac{-\sigma}{\xi_1 + \|x\|_2} & ext{if } \xi_1 > 0 \ \xi_1 - \|x\|_2 & ext{if } \xi_1 \leq 0 \end{cases}$$

- It is customary to compute a vector v such that $v_1=1$. So v is scaled by its first component.
- ightharpoonup If $\sigma==0$, wll get v=[1;x(2:m)] and eta=0.

8-5 Gyl 51 – HouOl

8-5

Matlab function:

GvL 5.1 – HouQR

Overall Procedure:

Given an m imes n matrix X, find w_1, w_2, \ldots, w_n such that $(I-2w_nw_n^T)\cdots(I-2w_2w_2^T)(I-2w_1w_1^T)X=R$ where $r_{ij}=0$ for i>j

- ightharpoonup First step is easy : select w_1 so that the first column of X becomes $lpha e_1$
- ightharpoonup Second step: select w_2 so that x_2 has zeros below 2nd component.
- ightharpoonup etc.. After k-1 steps: $X_k \equiv P_{k-1} \dots P_1 X$ has the following shape:

Problem 2: Generalization.

Want to transform x into y = Px where first k components of x and y are the same and $y_j = 0$ for j > k+1. In other words:

Problem 2: Given
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix}, x_1\in\mathbb{R}^k, x_2\in\mathbb{R}^{m-k},$$
 find: Householder transform $P=I-2ww^T$ such that: $Px=\begin{pmatrix}x_1\\\alpha e_1\end{pmatrix}$ where $e_1\in\mathbb{R}^{m-k}.$

- lacksquare Solution $w=inom{0}{\hat{w}}$, where \hat{w} is s.t. $(I-2\hat{w}\hat{w}^T)x_2=lpha e_1$
- ightharpoonup This is because: $P = egin{bmatrix} I & 0 \ \hline 0 & I 2 \hat{w} \hat{w}^T \end{bmatrix}$

-7 Gyl 5.1 – HouQF

3-8

GvL 5.1 - HouQR

$$X_k = egin{pmatrix} x_{11} \ x_{12} \ x_{13} \ \cdots & \cdots & x_{1n} \ x_{22} \ x_{23} \ \cdots & \cdots & x_{2n} \ x_{33} \ \cdots & \cdots & \ddots & dots \ x_{kk} \ \cdots & dots \ x_{k+1,k} \ \cdots & x_{k+1,n} \ dots & dots \ x_{m,k} \ \cdots & x_{m,n} \end{pmatrix}.$$

- To do: transform this matrix into one which is upper triangular up to the k-th column...
- > ... while leaving the previous columns untouched.

 \blacktriangleright To leave the first k-1 columns unchanged w must have zeros in positions 1 through k-1.

$$P_k = I - 2w_k w_k^T, \quad w_k = rac{v}{\|v\|_2},$$

where the vector $oldsymbol{v}$ can be expressed as a Householder vector for a shorter vector using the matlab function house,

$$v = egin{pmatrix} 0 \ house(X(k:m,k)) \end{pmatrix}$$

The result is that work is done on the (k:m,k:n) submatrix.

ALGORITHM : 1. Householder QR

- 1. For k=1:n do
- 2. $[v,\beta] = house(X(k:m,k))$
- 3. $X(k:m,k:n) = (I \beta vv^T)X(k:m,k:n)$
- If (k < m)
- X(k+1:m,k) = v(2:m-k+1)
- 7 end
- In the end:

$$X_n = P_n P_{n-1} \dots P_1 X =$$
 upper triangular

Yields the factorization:

$$X = QR$$

where:

$$Q=P_1P_2\dots P_n$$
 and $R=X_n$

Apply to system of
$$X=[x_1,x_2,x_3]=egin{pmatrix}1&1&1&1\\1&1&0\\1&0&-1\\1&0&4\end{pmatrix}$$
 vectors:

Answer:

$$x_1 = egin{pmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}$$
 , $\|x_1\|_2 = 2$, $v_1 = egin{pmatrix} 1+2 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}$, $v_1 = egin{pmatrix} 3 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}$

$$P_1 = I - rac{2}{v_1^T v_1} v_1 v_1^T = rac{1}{6} egin{pmatrix} -3 & -3 & -3 & -3 \ -3 & 5 & -1 & -1 \ -3 & -1 & 5 & -1 \ -3 & -1 & -1 & 5 \end{pmatrix}.$$

$$P_1X = egin{pmatrix} -2 & -1 & -2 \ 0 & 1/3 & -1 \ 0 & -2/3 & -2 \ 0 & -2/3 & 3 \end{pmatrix}$$
 Next stage:

$$ilde{x}_2 = egin{pmatrix} 0 \ 1/3 \ -2/3 \ -2/3 \end{pmatrix}$$
 , $\| ilde{x}_2\|_2 = 1$, $v_2 = egin{pmatrix} 0 \ 1/3 + 1 \ -2/3 \ -2/3 \end{pmatrix}$,

$$P_2 = I - rac{2}{v_2^T v_2} v_2 v_2^T = rac{1}{3} egin{pmatrix} 3 & 0 & 0 & 0 \ 0 & -1 & 2 & 2 \ 0 & 2 & 2 & -1 \ 0 & 2 & -1 & 2 \end{pmatrix},$$

$$P_2P_1X = egin{pmatrix} -2 & -1 & -2 \ 0 & -1 & 1 \ 0 & 0 & -3 \ 0 & 0 & 2 \end{pmatrix}$$
 Last stage:

$$ilde{x}_3 = egin{pmatrix} 0 \ 0 \ -3 \ 2 \end{pmatrix}$$
 , $\| ilde{x}_3\|_2 = \sqrt{13}$, $v_3 = egin{pmatrix} 0 \ 0 \ -3 - \sqrt{13} \ 2 \end{pmatrix}$,

$$P_2 = I - rac{2}{v_3^T v_3} v_3 v_3^T = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -.83205 & .55470 \ 0 & 0 & .55470 & .83205 \end{array}
ight),$$

$$P_3P_2P_1X = egin{pmatrix} -2 & -1 & -2 \ 0 & -1 & 1 \ 0 & 0 & \sqrt{13} \ 0 & 0 & 0 \end{pmatrix} = R,$$

$$P_3P_2P_1 = egin{pmatrix} -.50000 & -.50000 & -.50000 & -.50000 \ -.50000 & -.50000 & .50000 \ .13868 & -.13868 & -.69338 & .69338 \ -.69338 & .69338 & -.13868 & .13868 \end{pmatrix}$$

8-14

> So we end up with the factorization

$$X = \underbrace{P_1 P_2 P_3}_{Q} R$$

End Example

MAJOR difference with Gram-Schmidt: Q is $m \times m$ and R is $m \times n$ (same as X). The matrix R has zeros below the n-th row. Note also: this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt

Question:

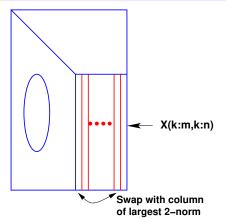
How to obtain $X = Q_1 R_1$ where $Q_1 =$ same size as X and R_1 is $n \times n$ (as in MGS)?

Answer: simply use the partitioning

$$X = ig(Q_1 \; Q_2ig)igg(egin{array}{c} R_1 \ 0 \ \end{array}igg) \quad
ightarrow \quad X = Q_1R_1$$

- Referred to as the "thin" QR factorization (or "economy-size QR" factorization in matlab)
- How to solve a least-squares problem Ax = b using the Householder factorization?
- \triangleright Answer: no need to compute Q_1 . Just apply Q^T to b.
- This entails applying the successive Householder reflections to b

Algorithm: At step k, active matrix is X(k:m,k:n). Swap k-th column with column of largest 2-norm in X(k:m,k:n). If all the columns have zero norm, stop.



The rank-deficient case

- \triangleright Result of Householder QR: Q_1 and R_1 such that $Q_1R_1=X$. In the rank-deficient case, can have $\operatorname{span}\{Q_1\} \neq \operatorname{span}\{X\}$ because R_1 may be singular.
- > Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

- $ightharpoonup R_{11}$ is nonsingular. So rank(X) = size of $R_{11} =$ rank (Q_1) and Q_1 and X span the same subspace.
- \triangleright Π permutes columns of X.

Practical Question: How to implement this ???

start. What happens to each of the norms of X(2:m,j) for $j=2,\cdots,n$? Generalize this to step k and obtain a procedure to inexpensively compute the desired norms at each step.

GvL 5.1 - HouQR

GvL 5.1 - HouQF

Properties of the QR factorization

Consider the 'thin' factorization A=QR, (size $(Q)=[\mathsf{m},\mathsf{n}]=\mathsf{size}$ (A)). Assume $r_{ii}>0,\ i=1,\ldots,n$

- 1. When $oldsymbol{A}$ is of full column rank this factorization exists and is unique
- 2. It satisfies:

$$\mathrm{span}\{a_1,\cdots,a_k\}=\mathrm{span}\{q_1,\cdots,q_k\},\quad k=1,\ldots,n$$

- 3. R is identical with the Cholesky factor G^T of A^TA .
- ightharpoonup When $oldsymbol{A}$ in rank-deficient and Householder with pivoting is used, then

$$Ran\{Q_1\} = Ran\{A\}$$

8-21 ______ GvL 5.1 – HouQR

8-21

Consider the mapping that sends any point x in \mathbb{R}^2 into a point y in \mathbb{R}^2 that is rotated from x by an angle θ . Find the matrix representing the mapping. [Hint: observe how the canonical basis is transformed.] Show an illustration. What is the mapping correspoding to an angle $-\theta$?

Main idea of Givens QR

Consider $y = \overline{Gx}$ then:

- $m{ ilde{>}}$ Can make $y_k=0$ by selecting $s=x_k/t;\; c=x_i/t;\; t=\sqrt{x_i^2+x_k^2}$
- This is used to introduce zeros in appropriate locations of first column of a matrix A (for example G(m-1,m), G(m-2,m-1) etc..G(1,2)). Then similarly for second column, etc.

> Givens rotations are matrices of the form:

Givens Rotations and the Givens QR

$$G(i,k, heta) = egin{pmatrix} 1 & \dots & 0 & & \dots & 0 & 0 \ dashed{:} & \ddots & dashed{:} & dashed{$$

with $c = \cos \theta$ and $s = \sin \theta$

ightharpoonup G(i,k, heta) represents a rotation in the span of e_i and e_k

8-22 GvL 5.1 – HouQR

8-22

3-23 GvL 5.1 – HouC