THE URV & SINGULAR VALUE DECOMPOSITIONS

• Orthogonal subspaces;

• Orthogonal projectors; Orthogonal decomposition;

• The URV decomposition

• Introduction to the Singular Value Decomposition

• The SVD – existence and properties.
Orthogonal projectors and subspaces

Notation: Given a subspace \mathcal{X} of \mathbb{R}^m define

$$\mathcal{X}^\perp = \{ y \mid y \perp x, \quad \forall \ x \in \mathcal{X} \}$$

Let $Q = [q_1, \cdots, q_r]$ an orthonormal basis of \mathcal{X}

How would you obtain such a basis?

Then define orthogonal projector $P = QQ^T$

Properties

(a) $P^2 = P$ \hfill (b) $(I - P)^2 = I - P$
(c) $\text{Ran}(P) = \mathcal{X}$ \hfill (d) $\text{Null}(P) = \mathcal{X}^\perp$
(e) $\text{Ran}(I - P) = \text{Null}(P) = \mathcal{X}^\perp$

Note that (b) means that $I - P$ is also a projector

GvL 2.4, 5.4-5 – SVD
Proof. (a), (b) are trivial

(c): Clearly \(\text{Ran}(P) = \{ x \mid x = QQ^T y, y \in \mathbb{R}^r \} \subseteq \mathcal{X} \).
Any \(x \in \mathcal{X} \) is of the form \(x = Qy, y \in \mathbb{R}^r \). Take \(Px = QQ^T(Qy) = Qy = x \). Since \(x = Px \), \(x \in \text{Ran}(P) \). So \(\mathcal{X} \subseteq \text{Ran}(P) \). In the end \(\mathcal{X} = \text{Ran}(P) \).

(d): \(x \in \mathcal{X}^\perp \iff (x, y) = 0, \forall y \in \mathcal{X} \iff (x, Qz) = 0, \forall z \in \mathbb{R}^r \iff (Q^Tx, z) = 0, \forall z \in \mathbb{R}^r \iff Q^Tx = 0 \iff QQ^Tx = 0 \iff Px = 0 \).

(e): Need to show inclusion both ways.
- \(x \in \text{Null}(P) \iff Px = 0 \iff (I - P)x = x \rightarrow x \in \text{Ran}(I - P) \)
- \(x \in \text{Ran}(I - P) \iff \exists y \in \mathbb{R}^m | x = (I - P)y \rightarrow Px = P(I - P)y = 0 \rightarrow x \in \text{Null}(P) \)
Result: Any \(x \in \mathbb{R}^m \) can be written in a unique way as

\[x = x_1 + x_2, \quad x_1 \in \mathcal{X}, \quad x_2 \in \mathcal{X}^\perp \]

Proof: Just set \(x_1 = Px, \quad x_2 = (I - P)x \)

Note:

\[\mathcal{X} \cap \mathcal{X}^\perp = \{0\} \]

Therefore:

\[\mathbb{R}^m = \mathcal{X} \oplus \mathcal{X}^\perp \]

Called the **Orthogonal Decomposition**
Orthogonal decomposition

In other words $\mathbb{R}^m = P\mathbb{R}^m \oplus (I - P)\mathbb{R}^m$ or:

$\mathbb{R}^m = Ran(P) \oplus Ran(I - P)$ or:

$\mathbb{R}^m = Ran(P) \oplus Null(P)$ or:

$\mathbb{R}^m = Ran(P) \oplus Ran(P)^\perp$

Can complete basis $\{q_1, \cdots, q_r\}$ into orthonormal basis of \mathbb{R}^m, q_{r+1}, \cdots, q_m

$\{q_{r+1}, \cdots, q_m\} = \text{basis of } \mathcal{X}^\perp$. \(\rightarrow \) $dim(\mathcal{X}^\perp) = m - r$.
Let $A \in \mathbb{R}^{m \times n}$ and consider $\text{Ran}(A)^\perp$

Property 1: $\text{Ran}(A)^\perp = \text{Null}(A^T)$

Proof: $x \in \text{Ran}(A)^\perp$ iff $(Ay, x) = 0$ for all y iff $(y, A^T x) = 0$ for all y ...

Property 2: $\text{Ran}(A^T) = \text{Null}(A)^\perp$

Take $\mathcal{X} = \text{Ran}(A)$ in orthogonal decomposition.

Result:

\[
\mathbb{R}^m = \text{Ran}(A) \oplus \text{Null}(A^T) \\
\mathbb{R}^n = \text{Ran}(A^T) \oplus \text{Null}(A)
\]

4 fundamental subspaces

$\text{Ran}(A) \quad \text{Null}(A^T) \\
\text{Ran}(A^T) \quad \text{Null}(A)$

GvL 2.4, 5.4-5 – SVD
Express the above with bases for \mathbb{R}^m:

$$[u_1, u_2, \cdots, u_r, u_{r+1}, u_{r+2}, \cdots, u_m]$$

and for \mathbb{R}^n:

$$[v_1, v_2, \cdots, v_r, v_{r+1}, v_{r+2}, \cdots, v_n]$$

Observe $u_i^T A v_j = 0$ for $i > r$ or $j > r$. Therefore

$$U^T A V = R = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}_{m \times n} \quad C \in \mathbb{R}^{r \times r} \quad \rightarrow$$

$$A = U R V^T$$

General class of URV decompositions
Far from unique.

Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

- Can select decomposition so that R is upper triangular \rightarrow URV decomposition.
- Can select decomposition so that R is lower triangular \rightarrow ULV decomposition.

SVD = special case of URV where $R = \text{diagonal}$

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]
Theorem} For any matrix $A \in \mathbb{R}^{m \times n}$ there exist unitary matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$A = U \Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

\[\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0 \text{ with } p = \min(n, m) \]

The σ_{ii}'s are the singular values. Notation change $\sigma_{ii} \rightarrow \sigma_i$

Proof: Let $\sigma_1 = \|A\|_2 = \max_{x, \|x\|_2 = 1} \|Ax\|_2$. There exists a pair of unit vectors v_1, u_1 such that

$$Av_1 = \sigma_1 u_1$$
Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$V \equiv [v_1, V_2] = n \times n \text{ unitary}$$

Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = m \times m \text{ unitary}$$

Define U, V as single Householder reflectors.

Then, it is easy to show that

$$AV = U \times \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \quad \rightarrow \quad U^T AV = \begin{pmatrix} \sigma_1 & w^T \\ 0 & B \end{pmatrix} \equiv A_1$$
Observe that
\[
\left\| A_1 \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\| \begin{pmatrix} \sigma_1 \\ w \end{pmatrix} \right\|_2
\]

This shows that \(w \) must be zero [why?]

Complete the proof by an induction argument.
Case 1:

\[A = \begin{bmatrix} \Sigma \end{bmatrix} \]

Case 2:

\[A = \begin{bmatrix} \Sigma \end{bmatrix} \]

GvL 2.4, 5.4-5 – SVD
Consider the Case-1. It can be rewritten as

\[A = [U_1U_2] \begin{pmatrix} \Sigma_1 \\ 0 \end{pmatrix} V^T \]

Which gives:

\[A = U_1 \Sigma_1 V^T \]

where \(U_1\) is \(m \times n\) (same shape as \(A\)), and \(\Sigma_1\) and \(V\) are \(n \times n\).

Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of \(A\) and the SVD of an \(n \times n\) matrix?
A few properties. Assume that

\[\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \text{ and } \sigma_{r+1} = \cdots = \sigma_p = 0 \]

Then:

- \(\text{rank}(A) = r = \) number of nonzero singular values.
- \(\text{Ran}(A) = \text{span}\{u_1, u_2, \ldots, u_r\} \)
- \(\text{Null}(A^T) = \text{span}\{u_{r+1}, u_{r+2}, \ldots, u_m\} \)
- \(\text{Ran}(A^T) = \text{span}\{v_1, v_2, \ldots, v_r\} \)
- \(\text{Null}(A) = \text{span}\{v_{r+1}, v_{r+2}, \ldots, v_n\} \)
• The matrix A admits the SVD expansion:

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

• $\|A\|_2 = \sigma_1 = $ largest singular value

• $\|A\|_F = \left(\sum_{i=1}^{r} \sigma_i^2\right)^{1/2}$

• When A is an $n \times n$ nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$
Let $k < r$ and

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T$$

then

$$\min_{\text{rank}(B)=k} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}$$
Proof: First: \(\|A - B\|_2 \geq \sigma_{k+1} \), for any rank-\(k \) matrix \(B \).

Consider \(X = \text{span}\{v_1, v_2, \cdots, v_{k+1}\} \). Note:

\[
\text{dim}(\text{Null}(B)) = n - k \rightarrow \text{Null}(B) \cap X \neq \{0\}
\]

[Why?]

Let \(x_0 \in \text{Null}(B) \cap X, \ x_0 \neq 0 \). Write \(x_0 = V y \). Then

\[
\| (A - B)x_0 \|_2 = \| Ax_0 \|_2 = \| U \Sigma V^T V y \|_2 = \| \Sigma y \|_2
\]

But \(\| \Sigma y \|_2 \geq \sigma_{k+1} \| x_0 \|_2 \) (Show this). \(\rightarrow \) \(\| A - B \|_2 \geq \sigma_{k+1} \)

Second: take \(B = A_k \). Achieves the min. \(\square \)
Right and Left Singular vectors:

\[\mathbf{A} \mathbf{v}_i = \sigma_i \mathbf{u}_i \]
\[\mathbf{A}^T \mathbf{u}_j = \sigma_j \mathbf{v}_j \]

Consequence

\[\mathbf{A}^T \mathbf{A} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i \]
\[\mathbf{A} \mathbf{A}^T \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i \]

Right singular vectors (\(\mathbf{v}_i \)'s) are eigenvectors of \(\mathbf{A}^T \mathbf{A} \)

Left singular vectors (\(\mathbf{u}_i \)'s) are eigenvectors of \(\mathbf{A} \mathbf{A}^T \)

Possible to get the SVD from eigenvectors of \(\mathbf{A} \mathbf{A}^T \) and \(\mathbf{A}^T \mathbf{A} \) – but: difficulties due to non-uniqueness of the SVD
Define the $r \times r$ matrix

$$\Sigma_1 = \text{diag}(\sigma_1, \ldots, \sigma_r)$$

Let $A \in \mathbb{R}^{m\times n}$ and consider $A^T A$ ($\in \mathbb{R}^{n\times n}$):

$$A^T A = V \Sigma^T \Sigma V^T \rightarrow A^T A = V \begin{pmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{pmatrix}_{n\times n} V^T$$

This gives the spectral decomposition of $A^T A$.

GvL 2.4, 5.4-5 – SVD
Similarly, U gives the eigenvectors of AA^T.

$$AA^T = U \begin{pmatrix} \Sigma_1^2 & 0 \\ 0 & 0 \end{pmatrix} U^T$$

Important:

$A^T A = V D_1 V^T$ and $AA^T = UD_2 U^T$ give the SVD factors U, V up to signs!