THE URV & SINGULAR VALUE DECOMPOSITIONS

e Orthogonal subspaces;

e Orthogonal projectors; Orthogonal decomposition;
e The URV decomposition

e Introduction to the Singular Value Decomposition

e The SVD - existence and properties.
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Orthogonal projectors and subspaces

Notation: Given a supspace X of R™ define
L—f{ylylaz, Va €x}

» Let Q = [q1,-** ,qr] an orthonormal basis of X
How would you obtain such a basis?
» Then define orthogonal projector P = QQ7T

Properties

(a) P (b)) I—P)?*=I-P
(c) Ran(P) (d) Null(P) = X+
(e) Ran(I — P) Null(P) = x+

» Note that (b) means that I — P is also a projector
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Proof. (a), (b) are trivial

(c): Clearly Ran(P) = {z| z = QQTy,y € R"} C X.
Any © € X is of the fom x = Qy,y € R". Take Px =
QQRT(Qy) = Qy = z. Sincex = Pz, z € Ran(P). So
X C Ran(P). In the end X = Ran(P).

(d): =z € Xt & (z,y) = 0,Vy € X = (x,Qz) =
0,Vz € R" ++ (QTz,2z) = 0,Vz € R" < QTz = 0 «—
QQTx =0+ Px =0.

(e): Need to show inclusion both ways.

ez € Null(lP) <> Pr =0+ (I —P)xr=x —

x € Ran(I — P)

e x € Ran(I — P) + Jy € R*xe = (I — P)y —
Px=P(I—-P)y=0—x € Null(P) ]
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Result: | Any & € IR™ can be written in a unique way as

T=T1+Ty, T € X, x5 € Xt
»  Proof: Just set &y = Px, xy= (I — P)x

» Note: XNnxt= {0}

»  Therefore: R"= X @ &+

» C(alled the Orthogonal Decomposition
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Orthogonal decomposition

» In other words R™ = PR™ @ (I — P)R™ or:
R™ = Ran(P) & Ran(I — P) or:
R™ = Ran(P) & Null(P) or:
R™ = Ran(P) ® Ran(P)*

» Can complete basis {q1, - - - , g} into orthonormal basis of R™,
dr4+1s°°° sQ9m

» {qri1,"* yqm} =basisof X+, —  dim(X+) =m —r.
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Four fundamental supspaces - URV decomposition

Let A € R™*™ and consider Ran(A)~
Property 1: Ran(A)* = Null(AT)

Proof: x € Ran(A)" iff (Ay,x) = 0 forall y iff (y, ATz) = 0
forall y ...

Property 2: Ran(AT) = Null(A)+*

» Take X = Ran(A) in orthogonal decomoposition. » Result:

4 fundamental subspaces
Ran(A) Null(AT)
Ran(AT) Null(A)

R™ = Ran(A) ® Null(AT)
R" = Ran(AT) @ Null(A)

9-6 GvlL 2.4, 5.4-5-SVD

9-6

» Express the above with bases for R™ :

[wi, way - -« 5 Uy Uri1, Upy2y - au@]
NV Vv
Ran(A) Null(AT)

and for R™ [0y, V2, y Uy Uri1s Urgzy** 5 Uy
TV NV
Ran(AT) Null(A)

»  Observe ulTA'Uj = 0 forz > r or 3 > r. Therefore

Co

T P —
UAV_R_<00

) cewr
mXn

A=URVT
»  General class of URV decompositions
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»  Far from unique.

Show how you can get a decomposition in which C'is lower (or
upper) triangular, from the above factorization.

»  Can select decomposition so that R is upper triangular — URV
decomposition.

»  Can select decomposition so that R is lower triangular — ULV
decomposition.

»  SVD = special case of URV where R = diagonal
How can you get the ULV decomposition by using only the

Householder QR factorization (possibly with pivoting)? [Hint: you
must use Householder twice]
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The Singular Value Decomposition (SVD)

Theorem | For any matrix A € R™*™ there exist unitary matrices
U € R™and V. € R"* " such that

A=UxVT

where X is a diagonal matrix with entries o;; > 0.

O11 > 022 > -+ 0pp > 0 with p = min(n, m)

» The o;;'s are the singular values. Notation change o;; — o3

Proof: | Let oy = || Al|2 = maxg z|,=1 ||Ax||2. There exists

a pair of unit vectors v1, wq such that
A’U1 = o1uU1
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»  Complete vy into an orthonormal basis of R™

V = [v1, Vo] = n X n unitary

»  Complete uq into an orthonormal basis of R™

U = [uy, U] = m X m unitary

Define U, V' as single Householder reflectors.

»  Then, it is easy to show that

0 B 0

T T
AV =U X ("“") — UTAV=<"1“’B>EA1
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»  Observe that

(a1
|4 (7], 2 o3+ lwl® = \fo? +
w/ 2

» This shows that w must be zero [why?]

(),

»  Complete the proof by an induction argument. |
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Case 1:

Case 2:

VT
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The “thin” SVD

»  Consider the Case-1. It can be rewritten as

A = [U,U,] (5(3)1> vT

Which gives:
A=Ux, VT

where Uy is m X n (same shape as A), and 31 and V are n X n
» Referred to as the “thin” SVD. Important in practice.

How can you obtain the thin SVD from the QR factorization of
A and the SVD of an n X n matrix?
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A few properties. | Assume that

01>032>-+>0,>0ando,y ;1 =---=0,=0

Then:

e rank(A) = r = number of nonzero singular values.

Ran(A) = span{uj, us, ..., u,}

Null(AT) = span{u, 1, Ury2y .-« Um}

Ran(AT) = span{vy, va,...,v,}

Null(A) = span{v,11, Ur12y ..+, Un}
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Properties of the SVD (continued)

e The matrix A admits the SVD expansion:

-
A= g a'iu,-vf
i=1

e ||A||]2 = o1 = largest singular value

o lAllr= (X0, 02)"

e When A is an i X m nonsingular matrix then ||[A7Y||s = 1/0,
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Theorem | Let kK < r and

k
Ak = Z Uiui'viT
=1
then

min _||A — Blls = ||A — Aillz = okta
rank(B)=k
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Proof: First: ||A — B||2 > o1, for any rank-k matrix B.
Consider X = span{wvy, va,-++ ,Vgt1}. Note:
dim(Null(B)) = n — k — Null(B) N X # {0}
[Why?]
Let g € Null(B) N X, xg # 0. Write xy = V'y. Then
(A = B)xollz = [|[Azoll2 = [USVIVy|l2 = [[Zyll,
But [|Xyll2 2> ok+1llzollz (Show this). — [[A — Bll2 > ok

Second: take B = Aj,. Achieves the min. [_]
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Right and Left Singular vectors:

A’Ui = Oo;U;
T —
A uj = ojv;

» Consequence ATAv; = ofv; and AATw; = olu;
» Right singular vectors (v;'s) are eigenvectors of AT A

» Left singular vectors (u;'s) are eigenvectors of AAT

» Possible to get the SVD from eigenvectors of AAT and ATA
— but: difficulties due to non-uniqueness of the SVD
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Define the » X 7 matrix

3, = diag(o1,...,0/)
» Llet A € R™X" and consider ATA (€ R™*7"):

2
ATA =vVvXTxvT 5 ATA=V (201 8) vT
N—— —

nxn

» This gives the spectral decomposition of AT A.
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» Similarly, U gives the eigenvectors of AAT.

Important:

ATA = VD, VT and AAT = UD,UT give the SVD factors
U,V up to signs!
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