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1 Problem description

Our problem is the assignment of heterogeneous agents to tasks which have a cost that grows over
time. To fully represent this we need to incorporate: (1) the tasks growing naturally over time and
(2) agents who can reduce this cost. This type of problem has an inherit positive-feedback loop.
If a task is growing faster than the agents are reducing it, then it will grow in the next time step.
Now that the task is bigger, it will grow even faster than in the previous time step and overcome
the agent reduction by a larger amount. This causes the size of tasks to rapidly increase if not
enough reduction is applied by the agents The opposite is true for when agents reduce tasks more
than they grow. In the next time step the task will be smaller and grow less, which means the
same agents will reduce the cost more in the next time step than this one.

We assume both agents and tasks have a locations to remain general for domains with robots
that need to travel to reach tasks. We make no other assumptions on the spatial locations of agents
or tasks other than an agent must be at a task’s location in order to work on that task. Our
methods are still applicable if there is no concept of distance or location when we look at the case
when agents can instantly travel to different tasks. In addition we also look at the case when agents
can only be assigned once and then have to remain at that task. For our problem to address both
of these simultaneously, we assume agents can have any desirable initial assignments and locations.
After this point, it takes agents a known travel time to reach another task.

2 Related work

Multi-agent task allocation is a well known NP-hard problem, giving rise to many different approx-
imate solutions. Two methods for task allocation have emerged as the main paradigms: threshold
and auction based methods. In threshold methods, agents individually assess the constraints and
their ability to complete each task. If an agent’s abilities surpass a threshold on the constraints,
then the agent assigns itself to the task. If not, the agent passes the information to other agents.
An example is [8], which uses distributed constraint optimization (DCOP) as a basis for task allo-
cation. A comparison between DCOP and swarm techniques is provided in [3]. On the other hand,
market inspired auction methods typically require more communication and are more centralized.
Zhang et al. [9] present an auction based approach to form executable coalitions, allowing multiple
agents from different locations to reach a task and compete it efficiently. Recently, decentralized
applications have been designed that add flexibility to the system (e.g., [5]). Our work strikes
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a balance between distribution and centralization, each agent is directed to an area by a central
authority, but upon reaching the destination, agents act on their own logic.

Other approaches have been developed, such as modeling task allocation as a potential game [2].
Sandholm et al. [7] present a generalized coalition formation algorithm which produces solutions
within a bound from the optimal via pruning. The work in [10] focuses on tasks that require
multiple agents to complete, while simultaneously trying to efficiently use the agent’s resources and
time. Our approach also assumes multiple agents are required, but we allow the requirements of
tasks to change over time.

Our work is most similar to Ramchurn et al. [6], except we reformulate the problem so task
resources change over time. Instead of having deadlines for tasks that expire at specific times, we
can consider each task having a minimum agent deadline which means a specific amount of agents
must be assigned to the task by this time in order for the task to be doable. Urban search and
rescue is a major focus of our work and we use the RoboCup Search and Rescue Simulator [4], which
provides simulations on street and building maps of real cities. Emergency situations are very time
critical and often lacking in information, as outlined in [1]. Most notably, when an emergency
occurs agents are spatially spread out and must quickly coordinate with each other to accomplish
tasks.
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