Multifrontal methods

- Start with the frontal method.
- Recall: Finite element matrix:
 \[A = \sum A^e \]

\(A^e \) = element matrix associated with element \(e \).
- An old idea: Execute Gaussian elimination as the elements are being assembled
- This is called the frontal method
- Very popular among finite element users: saves storage
The origin: Frontal method

Elimination of \(x_1 \) creates an update matrix
Matrix has 3 parts:

1) Fully assembled (no longer modified)
2) Frontal matrix: undergoes assembly + updates
3) Remainder: not accessed yet.
Assembly tree: - analogue to elimination tree

Can proceed from several incoupled elements at the same time → multifrontal technique [Duff & Reid, 1983]
Assembly tree for Multifrontal Method
Multifrontal methods: extension to general matrices

- Elimination tree replaces assembly tree
- Proceed in post-order traversal of elimination tree in order not to violate task dependencies.
- When a node is eliminated an update matrix is created.
- This matrix is passed to the parent which adds it to its frontal matrix.
- Requires a stack of pending update matrices
- Update matrices popped out as they are needed
- Typically implemented with nested dissection ordering
- More complex than a left-looking algorithm
$A_3 + U_1 + U_2$

Frontal Matrix

Update Matrix

Csci 8314 – February 25, 2014
Eliminating nodes 1 and 2:

What happens on matrix

\[
\begin{bmatrix}
1 & \star & & \star & & \\
2 & \star & & & & \\
\star & \star & 3 & & \blacksquare & \star & \blacksquare \\
4 & & \star & & & \\
5 & \star & & & & \\
\star & \star & 6 & & & \\
\star & \blacksquare & \star & & 7 & \star \\
\star & \star & \star & & 8 & \star \\
\star & \blacksquare & \star & & & \\
\end{bmatrix}
\]

\[\leftarrow U_1(3, :) \leftarrow U_2(3, :) \]

\[\leftarrow U_1(7, :) \]

\[\leftarrow U_2(9, :) \]
Supernodes

In GE, contiguous columns tend to inherit the same pattern as the columns from they are updated → Many columns will have same sparsity pattern.

A supernode = a set of contiguous columns in the Cholesky factor L which have the same sparsity pattern.

The set \(\{j, j + 1, \ldots, j + s\} \) is a supernode if

$$NZ(L_{*}, k) = NZ(L_{*}, k+1) \cup \{k + 1\} \quad j \leq k < j + s$$

where $NZ(L_{*}, k)$ is nonzero set of column k of L.
Supernodes
Other terms used: Mass elimination, indistinguishible nodes, active variables in front, subscript compression,...

- Idea is old but first suggested by S. Eisenstat for speeding up sparse codes on vector machines.
- Beneficial on most machines
- Gains come in part from savings in Gather-Scatter operations.