Multifrontal methods

- Start with the frontal method.
- Recall: Finite element matrix:
 \[A = \sum A[e] \]

 \(A[e] \) = element matrix associated with element \(e \).
- An old idea: Execute Gaussian elimination as the elements are being assembled
- This is called the frontal method
- Very popular among finite element users: saves storage

The origin: Frontal method

Matrix has 3 parts:
1. Fully assembled (no longer modified)
2. Frontal matrix: undergoes assembly + updates

- Elimination of \(x_1 \) creates an update matrix

Assembly tree: analogue to elimination tree

- Can proceed from several incoupled elements at the same time → multifrontal technique [Duff & Reid, 1983]
Multifrontal methods: extension to general matrices

- Elimination tree replaces assembly tree
- Proceed in post-order traversal of elimination tree in order not to violate task dependencies.
- When a node is eliminated an update matrix is created.
- This matrix is passed to the parent which adds it to its frontal matrix.
- Requires a stack of pending update matrices
- Update matrices popped out as they are needed
- Typically implemented with nested dissection ordering
- More complex than a left-looking algorithm
Supernodes

In GE, contiguous columns tend to inherit the same pattern as the columns from they are updated → Many columns will have same sparsity pattern.

A supernode = a set of contiguous columns in the Cholesky factor L which have the same sparsity pattern.

The set $\{j, j + 1, \ldots, j + s\}$ is a supernode if

$$NZ(L_{*,k}) = NZ(L_{*,k+1}) \cup \{k + 1\} \quad j \leq k < j + s$$

where $NZ(L_{*,k})$ is nonzero set of column k of L.

Other terms used: Mass elimination, indistinguishible nodes, active variables in front, subscript compression,...

- Idea is old but first suggested by S. Eisenstat for speeding up sparse codes on vector machines.
- Beneficial on most machines
- Gains come in part from savings in Gather-Scatter operations.