Iterative methods:
Notation and a brief background

- Mathematical background: matrices, inner products and norms
- Linear systems of equations
- Iterative processes

Notation & Review of some linear algebra concepts

- The set of all linear combinations of a set of vectors $G = \{a_1, a_2, \ldots, a_q\}$ of \mathbb{R}^n is a vector subspace called the linear span of G. Notation $\text{span}(G)$, $\text{span} \{a_1, a_2, \ldots, a_q\}$

- If the a_i's are linearly independent, then each vector of $\text{span}\{G\}$ admits a unique expression as a linear combination of the a_i's. The set G is then called a basis.

- Recall: A matrix represents a linear mapping between two vector spaces of finite dimension n and m.

Transposition: If $A \in \mathbb{R}^{m \times n}$ then its transpose is a matrix $C \in \mathbb{R}^{n \times m}$ with entries $c_{ij} = a_{ji}, i = 1, \ldots, n, j = 1, \ldots, m$

Notation: A^T.

Transpose Conjugate: for complex matrices, the transpose conjugate matrix denoted by A^H is more relevant: $A^H = \bar{A}^T = \bar{A}^T$

- We consider now only square matrices ($m = n$).

- Spectral radius = The maximum modulus of the eigenvalues $\rho(A) = \max_{\lambda \in \lambda(A)} |\lambda|$.

- Recall: $\lim_{k \to \infty} A^k = 0$ iff $\rho(A) < 1$.

Trace of A = sum of diagonal elements of A. $\text{tr}(A) = \sum_{i=1}^{n} a_{ii}$.

- $\text{tr}(A) = \text{sum of all the eigenvalues of } A \text{ counted with their multiplicities}$.

- Recall that $\det(A) = \text{product of all the eigenvalues of } A \text{ counted with their multiplicities}$.

Example: Trace, spectral radius, and determinant of the matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}.$$
Range and null space

Range: \(\text{Ran}(A) = \{ Ax \mid x \in \mathbb{R}^n \} \)

Null Space: \(\text{Null}(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \} \)

Range = linear span of the columns of \(A \)

Rank of a matrix \(\text{rank}(A) = \text{dim}(\text{Ran}(A)) \)

Rank (\(A \)) = the number of linearly independent columns of \(A \) = the number of linearly independent rows of \(A \).

A is of full rank if \(\text{rank}(A) = \min\{ m, n \} \). Otherwise it is rank-deficient.

Rank+Nullity theorem for an \(m \times n \) matrix:

\[
\text{dim}(\text{Ran}(A)) + \text{dim}(\text{Null}(A)) = n
\]

Types of matrices (square)

- **Symmetric matrices:** \(A^T = A \).
- **Hermitian matrices:** \(A^H = A \).
- **Skew-symmetric matrices:** \(A^T = -A \).
- **Skew-Hermitian matrices:** \(A^H = -A \).
- **Normal matrices:** \(A^H A = AA^H \).
- **Nonnegative matrices:** \(a_{ij} \geq 0 \), \(i,j = 1,...,n \) (similar definition for nonpositive, positive, and negative matrices).
- **Unitary matrices:** \(Q^H Q = I \).

Note: if \(Q \) is unitary then \(Q^{-1} = Q^H \).

Inner products and Norms

Inner product of 2 vectors \(x \) and \(y \) in \(\mathbb{R}^n \):

\[
x_1 y_1 + x_2 y_2 + \cdots + x_n y_n \text{ in } \mathbb{R}^n
\]

Notation: \((x,y)\) or \(y^T x \)

For complex vectors

\[
(x,y) = x_1 \bar{y}_1 + x_2 \bar{y}_2 + \cdots + x_n \bar{y}_n \text{ in } \mathbb{C}^n
\]

Note: \((x,y) = y^H x \)

An important property: Given \(A \in \mathbb{C}^{m \times n} \) then

\[
(Ax, y) = (x, A^H y) \text{ } \forall \text{ } x \in \mathbb{C}^n, \forall y \in \mathbb{C}^m
\]

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

A vector norm on a vector space \(X \) is a real-valued function on \(X \), which satisfies the following three conditions:

1. \(\|x\| \geq 0 \), \(\forall x \in X \), and \(\|x\| = 0 \) iff \(x = 0 \).
2. \(\|\alpha x\| = |\alpha|\|x\| \), \(\forall x \in X \), \(\forall \alpha \in \mathbb{C} \).
3. \(\|x + y\| \leq \|x\| + \|y\| \), \(\forall x, y \in X \).

3. is called the triangle inequality.
Example: Euclidean norm on $X = \mathbb{C}^n$,

$$\|x\|_2 = (x, x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$$

- Most common vector norms in numerical linear algebra:

 $$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|,$$

 $$\|x\|_2 = [|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2]^{1/2},$$

 $$\|x\|_\infty = \max_{i=1,\ldots,n} |x_i|.$$

- The Cauchy-Schwartz inequality (important) is:

$$|(x, y)| \leq \|x\|_2 \|y\|_2.$$

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k = 1, \ldots, \infty$ converges to a vector x with respect to the norm $\|\cdot\|$ if, by definition,

$$\lim_{k \to \infty} \|x^{(k)} - x\| = 0$$

- Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

- Notation: $\lim_{k \to \infty} x^{(k)} = x$

- Note: $x^{(k)}$ converges to x iff each component $x^{(k)}_i$ of $x^{(k)}$ converges to the corresponding component x_i of x.

Matrix norms

- Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn}. These norms satisfy the usual properties of vector norms, i.e.,

 1. $\|A\| \geq 0$, $\forall A \in \mathbb{C}^{m \times n}$, and $\|A\| = 0$ iff $A = 0$
 2. $\|\alpha A\| = |\alpha| \|A\|$, $\forall A \in \mathbb{C}^{m \times n}$, $\forall \alpha \in \mathbb{C}$
 3. $\|A + B\| \leq \|A\| + \|B\|$, $\forall A, B \in \mathbb{C}^{m \times n}$.

- However, these will lack (in general) the right properties for composition of operators (product of matrices).

- The case of $\|\cdot\|_2$ yields the Frobenius norm of matrices.

Given a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}.$$

- These norms satisfy the usual properties of vector norms (see previous page).

- The matrix norm $\|\cdot\|_p$ is induced by the vector norm $\|\cdot\|_p$.

- Again, important cases are for $p = 1, 2, \infty$.
Consistency

- A fundamental property is consistency
 \[\|AB\|_p \leq \|A\|_p \|B\|_p. \]
- Consequence: \[\|A^k\|_p \leq \|A\|_p^k \]
- \(A^k \) converges to zero if any of its \(p \)-norms is < 1
- The Frobenius norm is defined by
 \[\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2 \right)^{1/2}. \]
- This norm is also consistent [but not induced from a vector norm]

Important equalities:

- \(\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}| \),
- \(\|A\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}| \),
- \(\|A\|_2 = \left[\rho(A^HA) \right]^{1/2} = \left[\rho(AA^H) \right]^{1/2}, \)
- \(\|A\|_F = \left[\text{Tr}(A^HA) \right]^{1/2} = \left[\text{Tr}(AA^H) \right]^{1/2}. \)

Positive-Definite Matrices

- A real matrix is said to be positive definite if
 \[(Au, u) > 0 \text{ for all } u \neq 0 \quad \forall u \in \mathbb{R}^n \]
- Let \(A \) be a real positive definite matrix. Then there is a scalar \(\alpha > 0 \) such that
 \[(Au, u) \geq \alpha \|u\|^2_2, \]
- Consider now the case of Symmetric Positive Definite (SPD) matrices.
 - Consequence 1: \(A \) is nonsingular
 - Consequence 2: the eigenvalues of \(A \) are (real) positive

A few properties of Symmetric Positive Definite matrices

- Diagonal entries of \(A \) are positive. More generally, ...
- Diagonal block \(A(k : l, k : l) \), \((k < l) \), is SPD
- For any \(n \times k \) matrix \(X \) of rank \(k \), the matrix \(X^TAX \) is SPD.
- The mapping :
 \[x, y \rightarrow (x, y)_A \equiv (Ax, y) \]
 is a proper inner product on \(\mathbb{R}^n \). The associated norm, denoted by \(\|\cdot\|_A \), is called the energy norm:
 \[\|x\|_A = (Ax, x)^{1/2} = \sqrt{x^TAX} \]
- \(A \) admits the Cholesky factorization \(A = LL^T \) where \(L \) is lower triangular
Iterative processes for linear systems

In contrast with "direct" methods (Gaussian Elimination) iterative methods compute a sequence of approximations \(x^{(k)} \) to the solution \(x \). Ideally, a good approximation is obtained in a few iterations of the process. Convergence measured by some norm.

Questions which arise:
- Why not use a direct method [always works!]
- Under which condition(s) will the method converge?
- When to stop?
- Can we estimate costs?

Basic relaxation schemes

- **Relaxation schemes**: methods that modify one component of current approximation at a time

- Based on the decomposition \(A = D - E - F \) with:
 - \(D = \text{diag}(A) \)
 - \(E = \) strict lower part of \(A \)
 - \(F = \) its strict upper part.

Gauss-Seidel iteration for solving \(Ax = b \):
- corrects \(j \)-th component of current approximate solution, to zero the \(j \)-th component of residual for \(j = 1, 2, \ldots, n \).

Basic relaxation techniques

- **Relaxation methods**: Jacobi, Gauss-Seidel, SOR
- **Basic convergence results**
- **Optimal relaxation parameter for SOR**
- **See Chapter 4 of text for details.**

Gauss-Seidel iteration can be expressed as:
\[
(D - E)x^{(k+1)} = Fx^{(k)} + b
\]

Can also define a backward Gauss-Seidel Iteration:
\[
(D - F)x^{(k+1)} = Ex^{(k)} + b
\]

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:
\[
\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)
\]

\[\rightarrow\] successive overrelaxation, (SOR):
\[
(D - \omega E)x^{(k+1)} = [\omega F + (1 - \omega)D]x^{(k)} + \omega b
\]
Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

\[x^{(k+1)} = M x^{(k)} + f \]

- Jacobi
 \[M_{Jac} = D^{-1}(E + F) = I - D^{-1}A \]
- Gauss-Seidel
 \[M_{GS} = (D - E)^{-1}F = I - (D - E)^{-1}A \]
- SOR
 \[M_{SOR} = (D - \omega E)^{-1}(\omega F + (1 - \omega)D) = I - (\omega^{-1}D - E)^{-1}A \]
- SSOR
 \[M_{SSOR} = I - \omega(2 - \omega)(D - \omega F)^{-1}D(D - \omega E)^{-1}A \]

General convergence result

Consider the iteration:

\[x^{(k+1)} = G x^{(k)} + f \]

(1) Assume that \(\rho(G) < 1 \). Then \(I - G \) is non-singular and \(G \) has a fixed point. Iteration converges to a fixed point for any \(f \) and \(x^{(0)} \).

(2) If iteration converges for any \(f \) and \(x^{(0)} \) then \(\rho(G) < 1 \).

Example: Richardson’s iteration

\[x^{(k+1)} = x^{(k)} + \alpha (b - Ax^{(k)}) \]

Assume \(\Lambda(A) \subset \mathbb{R} \). When does the iteration converge?

A few well-known results

- Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that
 \[|a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, \ldots, n \]
- SOR converges for \(0 < \omega < 2 \) for SPD matrices
- The optimal \(\omega \) is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.

A matrix has property A if it can be (symmetrically) permuted into a \(2 \times 2 \) block matrix whose diagonal blocks are diagonal.

\[P A P^T = \begin{bmatrix} D_1 & E \\ E^T & D_2 \end{bmatrix} \]

- Let \(A \) be a matrix which has property A. Then the eigenvalues \(\lambda \) of the SOR iteration matrix and the eigenvalues \(\mu \) of the Jacobi iteration matrix are related by
 \[(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2 \]

- The optimal \(\omega \) for matrices with property A is given by
 \[\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho(B)^2}} \]
 where \(B \) is the Jacobi iteration matrix.
The iteration $x^{(k+1)} = Mx^{(k)} + f$ is attempting to solve $(I - M)x = f$. Since M is of the form $M = I - P^{-1}A$ this system can be rewritten as

$$P^{-1}Ax = P^{-1}b$$

where for SSOR, we have

$$P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$$

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation iter. \iff Preconditioned Fixed Point Iter.