Krylov subspace methods (Continued)

- Practical variants: restarting and truncating
- Symmetric case: The link with the Lanczos algorithm
- The Conjugate Gradient algorithm
- See Chapter 6 of text for details.
Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restart. Fix m (dim. of subspace)

Algorithm 1: Restarted GMRES (resp. Arnoldi)

1. **(Re)-Start:** Compute $r_0 = b - Ax_0$,
 \[v_1 = r_0 / (\beta := \|r_0\|_2). \]
2. **Arnoldi Process:** generate \bar{H}_m and V_m.
3. **Compute** $y_m = H_m^{-1} \beta e_1$ (FOM), or
 \[y_m = \arg\min ||\beta e_1 - \bar{H}_m y||_2 \text{ (GMRES)} \]
4. $x_m = x_0 + V_m y_m$
5. If $\|r_m\|_2 \leq \epsilon \|r_0\|_2$ stop
 else set $x_0 := x_m$ and go to 1.
Second remedy: Truncate the orthogonalization

The formula for \(v_{j+1} \) is replaced by

\[
h_{j+1,j}v_{j+1} = Av_j - \sum_{i=j-k+1}^{j} h_{ij}v_i
\]

- Each \(v_j \) is made orthogonal to the previous \(k \) \(v_i \)'s.
- \(x_m \) still computed as \(x_m = x_0 + V_m H_m^{-1} / \beta e_1 \).
- It can be shown that this is an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or ‘incomplete’) orthogonalization.
The direct version of IOM [DIOM]:

- Write the LU decomposition of H_m as $H_m = L_m U_m$

$$x_m = x_0 + V_m U_m^{-1} L_m^{-1} \beta e_1 \equiv x_0 + P_m z_m$$

Structure of L_m, U_m

when $k = 3$

$$L_m = \begin{bmatrix} 1 & x & 1 \\ x & 1 & x \\ x & 1 & 1 \end{bmatrix}, \quad U_m = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

- $p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i]$
 $z_m = \begin{bmatrix} z_{m-1} \\ \zeta_m \end{bmatrix}$
Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix.

- CG-like formulation of IOM called DIOM [YS, 1982]
- ORTHORES(k) [Young & Jea ’82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, ’77] uses LQ factorization of H_m.
- Can incorporate partial pivoting in LU factorization of H_m.
The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j - 1; \text{ and}$$

$$h_{j,j+1} = h_{j+1,j}, \quad j = 1, \ldots, m$$
We can write

\[H_m = \begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ \beta_3 & \alpha_3 & \beta_4 \\ & \ddots & \ddots & \ddots \\ & & \beta_m & \alpha_m \end{bmatrix} \] (1)

The \(v_i \)'s satisfy a 3-term recurrence [Lanczos Algorithm]:

\[\beta_{j+1} v_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1} \]

Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi \(\rightarrow \) Symmetric Lanczos
The Lanczos algorithm

ALGORITHM : 2. Lanczos

1. **Choose an initial vector** v_1, s.t. $\|v_1\|_2 = 1$

 Set $\beta_1 \equiv 0, v_0 \equiv 0$

2. **For** $j = 1, 2, \ldots, m$ **Do**:

3. $w_j := Av_j - \beta_j v_{j-1}$

4. $\alpha_j := (w_j, v_j)$

5. $w_j := w_j - \alpha_j v_j$

6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then **Stop**

7. $v_{j+1} := w_j / \beta_{j+1}$

8. **EndDo**
Lanczos algorithm for linear systems

- Usual orthogonal projection method setting:
 - \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)
 - Basis \(V_m = [v_1, \ldots, v_m] \) of \(K_m \) generated by the Lanczos algorithm

- Three different possible implementations.
 1. Arnoldi-like;
 2. Exploit tridiagonal nature of \(H_m \) (DIOM);
 3. Conjugate gradient - derived from (2)
ALGORITHM : 3. **Lanczos Method for Linear Systems**

1. Compute $r_0 = b - Ax_0$, $\beta := \|r_0\|_2$, and $v_1 := r_0/\beta$
2. For $j = 1, 2, \ldots, m$ Do:
 3. $w_j = Av_j - \beta_j v_{j-1}$ (If $j = 1$ set $\beta_1 v_0 \equiv 0$)
 4. $\alpha_j = (w_j, v_j)$
 5. $w_j := w_j - \alpha_j v_j$
 6. $\beta_{j+1} = \|w_j\|_2$. If $\beta_{j+1} = 0$ set $m := j$ and go to 9
 7. $v_{j+1} = w_j/\beta_{j+1}$
8. EndDo
9. Set $T_m = \text{tridiag}(\beta_i, \alpha_i, \beta_{i+1})$, and $V_m = [v_1, \ldots, v_m]$
10. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m = x_0 + V_m y_m$
ALGORITHM : 4. D-Lanczos

1. Compute $r_0 = b - Ax_0$, $\zeta_1 := \beta := \|r_0\|_2$, and $v_1 := \frac{r_0}{\beta}$
2. Set $\lambda_1 = \beta_1 = 0$, $p_0 = 0$
3. For $m = 1, 2, \ldots$, until convergence Do:
4. Compute $w := Av_m - \beta_m v_{m-1}$ and $\alpha_m = (w, v_m)$
5. If $m > 1$ compute $\lambda_m = \frac{\beta_m}{\eta_{m-1}}$ and $\zeta_m = -\lambda_m \zeta_{m-1}$
6. $\eta_m = \alpha_m - \lambda_m \beta_m$
7. $p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1})$
8. $x_m = x_{m-1} + \zeta_m p_m$
9. If x_m has converged then Stop
10. $w := w - \alpha_m v_m$
11. $\beta_{m+1} = \|w\|_2$, $v_{m+1} = w / \beta_{m+1}$
12. EndDo
The Conjugate Gradient Algorithm (A S.P.D.)

- In D-Lanczos, $r_m = \text{scalar} \times v_{m-1}$ and $p_m = \text{scalar} \times [v_m - \beta_m p_{m-1}]$

- And we have $x_m = x_{m-1} + \xi_m p_m$

- So there must exist an update of the form:

 1. $p_m = r_{m-1} + \beta_m p_{m-1}$
 2. $x_m = x_{m-1} + \xi_m p_m$
 3. $r_m = r_{m-1} - \xi_m A p_m$

- Note: p_m is scaled differently and β_m is not the same

- Note: the p_i's are A-orthogonal

- The r_i's are orthogonal.
The Conjugate Gradient Algorithm (A S.P.D.)

1. Start: \(r_0 := b - Ax_0, p_0 := r_0 \).

2. Iterate: Until convergence do,

(a) \(\alpha_j := (r_j, r_j) / (Ap_j, p_j) \)
(b) \(x_{j+1} := x_j + \alpha_j p_j \)
(c) \(r_{j+1} := r_j - \alpha_j Ap_j \)
(d) \(\beta_j := (r_{j+1}, r_{j+1}) / (r_j, r_j) \)
(e) \(p_{j+1} := r_{j+1} + \beta_j p_j \)

- \(r_j = scaling \times v_{j+1} \). The \(r_j \)'s are orthogonal.
- The \(p_j \)'s are \(A \)-conjugate, i.e., \((Ap_i, p_j) = 0 \) for \(i \neq j \).

Question: How to apply preconditioning?
Recall: Left, Right, and Split preconditioning

Left preconditioning

\[M^{-1}Ax = M^{-1}b \]

Right preconditioning

\[AM^{-1}u = b, \text{ with } x = M^{-1}u \]

Split preconditioning: \(M \) is factored as \(M = M_LM_R \).

\[M_L^{-1}AM_R^{-1}u = M_L^{-1}b, \text{ with } x = M_R^{-1}u \]
Preconditioned CG (PCG)

- Assume: A and M are both SPD.
- Can apply CG directly to systems $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$
- Problem: loss of symmetry
- Alternative: when $M = LL^T$ use split preconditioner option
- Second alternative: Observe that $M^{-1}A$ is self-adjoint with respect to M inner product:

$$(M^{-1}Ax, y)_M = (Ax, y) = (x, Ay) = (x, M^{-1}Ay)_M$$
Preconditioned CG (PCG)

ALGORITHM : 5. Preconditioned CG

1. Compute $r_0 := b - Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
2. For $j = 0, 1, \ldots$, until convergence Do:
 3. $\alpha_j := (r_j, z_j)/(Ap_j, p_j)$
 4. $x_{j+1} := x_j + \alpha_j p_j$
 5. $r_{j+1} := r_j - \alpha_j Ap_j$
 6. $z_{j+1} := M^{-1}r_{j+1}$
 7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$
 8. $p_{j+1} := z_{j+1} + \beta_j p_j$
9. EndDo
Note $M^{-1}A$ is also self-adjoint with respect to $(\cdot, \cdot)_A$:

$$(M^{-1}Ax, y)_A = (AM^{-1}Ax, y)$$
$$= (x, AM^{-1}Ay)$$
$$= (x, M^{-1}Ay)_A$$

- Can obtain an algorithm similar to PCG
- Assume that $M = \text{Cholesky product } M = LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b, \text{ with } x = L^T u$$

- Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by $\hat{\cdot}$.
ALGORITHM : 6. **CG with Split Preconditioner**

1. Compute $r_0 := b - Ax_0; \hat{r}_0 = L^{-1}r_0; p_0 := L^{-T}\hat{r}_0$.
2. For $j = 0, 1, \ldots$, until convergence Do:
 3. $\alpha_j := (\hat{r}_j, \hat{r}_j) / (Ap_j, p_j)$
 4. $x_{j+1} := x_j + \alpha_j p_j$
 5. $\hat{r}_{j+1} := \hat{r}_j - \alpha_j L^{-1}Ap_j$
 6. $\beta_j := (\hat{r}_{j+1}, \hat{r}_{j+1}) / (\hat{r}_j, \hat{r}_j)$
 7. $p_{j+1} := L^{-T}\hat{r}_{j+1} + \beta_j p_j$
 8. EndDo

The x_j’s produced by the above algorithm and PCG are identical (if same initial guess is used).

Prove it