The equality & inequality constrained optimization problem

minimize $f(x)$
subject to $h_i(x) = 0 \quad i = 1, \ldots, m$
$g_j(x) \leq 0 \quad j = 1, \ldots, n$
Constrained Optimization

- The equality & inequality constrained optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h_i(x) = 0 \quad i = 1, \ldots, m \\
& \quad g_j(x) \leq 0 \quad j = 1, \ldots, n
\end{align*}
\]

- Domain \(\mathcal{D} = \text{dom}(f) \cap \bigcap_{i=1}^m \text{dom}(h_i) \cap \bigcap_{j=1}^n \text{dom}(g_j) \)
The equality & inequality constrained optimization problem

\[\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h_i(x) = 0 \quad i = 1, \ldots, m \\
& \quad g_j(x) \leq 0 \quad j = 1, \ldots, n \\
\end{align*} \]

Domain \(\mathcal{D} = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(h_i) \cap \bigcap_{j=1}^{n} \text{dom}(g_j) \)

The Lagrangian

\[L(x, \lambda, \nu) = f(x) + \lambda^T h(x) + \nu^T g(x) \]

\[= f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \]
The equality & inequality constrained optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad h_i(x) = 0 \quad i = 1, \ldots, m \\
& \quad g_j(x) \leq 0 \quad j = 1, \ldots, n
\end{align*}
\]

Domain \(\mathcal{D} = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(h_i) \cap \bigcap_{j=1}^{n} \text{dom}(g_j) \)

The Lagrangian

\[
L(x, \lambda, \nu) = f(x) + \lambda^T h(x) + \nu^T g(x)
\]

\[
= f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x)
\]

Domain \(\text{dom}(L) = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^n \)
The equality & inequality constrained optimization problem

\[
\text{minimize } f(x) \\
\text{subject to } h_i(x) = 0 \quad i = 1, \ldots, m \\
g_j(x) \leq 0 \quad j = 1, \ldots, n
\]

Domain \(D = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(h_i) \cap \bigcap_{j=1}^{n} \text{dom}(g_j) \)

The Lagrangian

\[
L(x, \lambda, \nu) = f(x) + \lambda^T h(x) + \nu^T g(x)
\]

\[
= f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x)
\]

Domain \(\text{dom}(L) = D \times \mathbb{R}^m \times \mathbb{R}^n \)

\(\{\lambda_i\}_{i=1}^{m}, \{\nu_j\}_{j=1}^{n} \) are the Lagrange multipliers
The Lagrange dual function

\[L^*(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]
The Lagrange dual function

\[L^*(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \]

\[= \inf_{x \in D} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]

Let \(p^* \) be the constrained optimum of \(f(x) \)

Instructor: Arindam Banerjee
The Lagrange dual function

\[L^*(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) \]

\[= \inf_{x \in \mathcal{D}} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]

Let \(p^* \) be the constrained optimum of \(f(x) \)

The Lagrange dual \(L^* \) is
Lagrange Dual

- The Lagrange dual function
 \[L^*(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \]
 \[= \inf_{x \in D} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]

- Let \(p^* \) be the constrained optimum of \(f(x) \)

- The Lagrange dual \(L^* \) is
 - A concave function, even when original problem is not convex
The Lagrange dual function

\[L^*(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \]

\[= \inf_{x \in D} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]

Let \(p^* \) be the constrained optimum of \(f(x) \)

The Lagrange dual \(L^* \) is

- A concave function, even when original problem is not convex
- A lower bound: for \(\nu \geq 0 \), \(L^*(\lambda, \nu) \leq p^* \)
The Lagrange dual function

\[L^*(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \]

\[= \inf_{x \in D} \left(f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{n} \nu_j g_j(x) \right) \]

Let \(p^* \) be the constrained optimum of \(f(x) \)

The Lagrange dual \(L^* \) is

- A concave function, even when original problem is not convex
- A lower bound: for \(\nu \geq 0 \), \(L^*(\lambda, \nu) \leq p^* \)

How close is the maximum of \(L^*(\lambda, \nu) \) to \(p^* \)?
An Example

minimize \(x^T x \)
subject to \(A x = b \)

- Lagrangian \(L(x, \lambda) = x^T x + \lambda^T (A x - b) \)
- Recall that \(L^*(\lambda) = \inf_x L(x, \lambda) \)
- Setting gradient to 0, \(x = -\frac{1}{2} A^T \lambda \)
- Hence, the dual

\[
L^*(\lambda) = L\left(-\frac{1}{2} A^T \lambda, \lambda\right) = -\frac{1}{4} \lambda^T A A^T \lambda - \lambda^T b
\]

- \(L^*(\lambda) \) is a lower bounding concave function
The Lagrange Dual Problem

maximize $L^*(\lambda, \nu)$
subject to $\nu \geq 0$

- Best lower bound to p^*, the optimal of the primal
The Lagrange Dual Problem

maximize $L^*(\lambda, \nu)$
subject to $\nu \geq 0$

- Best lower bound to p^*, the optimal of the primal
- Concave optimization problem with maximum d^*
The Lagrange Dual Problem

maximize $L^*(\lambda, \nu)$
subject to $\nu \geq 0$

- Best lower bound to p^*, the optimal of the primal
- Concave optimization problem with maximum d^*
- Constraints are $\nu \geq 0$ and $(\lambda, \nu) \in \text{dom}(L^*)$
The Lagrange Dual Problem

maximize $L^*(\lambda, \nu)$
subject to $\nu \geq 0$

- Best lower bound to p^*, the optimal of the primal
- Concave optimization problem with maximum d^*
- Constraints are $\nu \geq 0$ and $(\lambda, \nu) \in \text{dom}(L^*)$
- For example, in linear programming

minimize $c^T x$
subject to $Ax = b$
$x \geq 0$

maximize $-b^T \lambda$
subject to $A^T \lambda + c \geq 0$
Weak and Strong Duality

- Weak Duality: $d^* \leq p^*$

Strong Duality:

- $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check if it holds?

Constraint Qualification

- Normally true on convex problems
- True if the convex problem is strictly feasible, e.g.,
 $\exists x \in \text{relint}(D)$ s.t.
 $Ax = b, g_j(x) < 0, \text{for some } j$

Slater's Condition for strong duality
Weak and Strong Duality

- **Weak Duality**: $d^* \leq p^*$
 - Always holds

Non-trivial lower bounds for hard problems
Used in approximation algorithms

- **Strong Duality**: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check if it holds?

Constraint Qualification
- Normally true on convex problems
- True if the convex problem is strictly feasible, e.g.,
 $\exists x \in \text{relint}(D) \text{ s.t. } Ax = b, g_j(x) < 0, \text{ for some } j$

Slater's Condition for strong duality
Weak and Strong Duality

- **Weak Duality:** $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems

- **Strong Duality:**
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check if holds?
 - **Constraint Qualification**
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,
 - $\exists x \in \text{relint}(D)$ s.t. $Ax = b$, $g_j(x) < 0$, for some j

Instructor: Arindam Banerjee
Weak and Strong Duality

- **Weak Duality:** $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?
 - **Constraint Qualification**
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,
 $\exists x \in \text{relint}(D) \text{ s.t. } Ax = b, g_j(x) < 0$, for some j

Instructor: Arindam Banerjee
Constrained Optimization, Duality
Weak and Strong Duality

- **Weak Duality:** \(d^* \leq p^* \)
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** \(d^* = p^* \)
Weak and Strong Duality

- **Weak Duality:** \(d^* \leq p^* \)
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** \(d^* = p^* \)
 - Does not hold in general
Weak and Strong Duality

- **Weak Duality:** $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual

Instructor: Arindam Banerjee

Constrained Optimization, Duality
Weak and Strong Duality

- **Weak Duality:** \(d^* \leq p^* \)
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms
- **Strong Duality:** \(d^* = p^* \)
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?

Constraint Qualification
- Normally true on convex problems
- True if the convex problem is strictly feasible, e.g., \(\exists x \in \text{relint}(D) \) s.t. \(Ax = b, g_j(x) < 0 \), for some \(j \)

Slater's Condition for strong duality
Weak and Strong Duality

- **Weak Duality:** \(d^* \leq p^* \)
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** \(d^* = p^* \)
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if it holds?

- **Constraint Qualification**

Instructor: Arindam Banerjee

Constrained Optimization, Duality
Weak and Strong Duality

- **Weak Duality:** \(d^* \leq p^* \)
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** \(d^* = p^* \)
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?

- **Constraint Qualification**
 - Normally true on convex problems
Weak and Strong Duality

- **Weak Duality**: $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality**: $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if holds?

- **Constraint Qualification**
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,
 \[
 \exists x \in \text{relint}(\mathcal{D}) \text{ s.t. } Ax = b, \quad g_j(x) < 0, \quad \text{for some } j
 \]
Weak and Strong Duality

- **Weak Duality:** $d^* \leq p^*$
 - Always holds
 - Non-trivial lower bounds for hard problems
 - Used in approximation algorithms

- **Strong Duality:** $d^* = p^*$
 - Does not hold in general
 - If it holds, it is sufficient to solve the dual
 - How to check it if it holds?

- **Constraint Qualification**
 - Normally true on convex problems
 - True if the convex problem is strictly feasible, e.g.,

 $$\exists x \in \text{relint}(\mathcal{D}) \text{ s.t. } Ax = b, \quad g_j(x) < 0, \text{ for some } j$$

- Slater’s Condition for strong duality
Example: Quadratic Programs

\[
\begin{align*}
\text{minimize} & \quad x^T x \\
\text{subject to} & \quad Ax \leq b
\end{align*}
\]

- Lagrange dual

\[
L^*(\nu) = \inf_x \left(x^T x + \nu^T (Ax - b) \right) = -\frac{1}{4} \nu^T AA^T \nu - b^T \nu
\]

- Dual problem

\[
\begin{align*}
\text{maximize} & \quad -\frac{1}{4} \nu^T AA^T \nu - b^T \nu \\
\text{subject to} & \quad \nu \geq 0
\end{align*}
\]

- From Slater’s condition, \(p^* = d^* \)
- It is sufficient to solve the dual
If strong duality holds, \mathbf{x}^* for primal, (λ^*, ν^*) for dual

$$f(\mathbf{x}^*) = L^*(\lambda^*, \nu^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j^* g_j(\mathbf{x}) \right)$$

$$\leq f(\mathbf{x}^*) + \sum_{i=1}^{m} \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^{n} \nu_j^* g_j(\mathbf{x}^*)$$

$$\leq f(\mathbf{x}^*)$$
Complementary Slackness

- If strong duality holds, x^* for primal, (λ^*, ν^*) for dual

$$f(x^*) = L^*(\lambda^*, \nu^*) = \inf_x \left(f(x) + \sum_{i=1}^{m} \lambda_i^* h_i(x) + \sum_{j=1}^{n} \nu_j^* g_j(x) \right)$$

$$\leq f(x^*) + \sum_{i=1}^{m} \lambda_i^* h_i(x^*) + \sum_{j=1}^{n} \nu_j^* g_j(x^*)$$

$$\leq f(x^*)$$

- The two inequalities hold with equality
Complementary Slackness

- If strong duality holds, \mathbf{x}^* for primal, (λ^*, ν^*) for dual

\[
\begin{align*}
 f(\mathbf{x}^*) &= L^*(\lambda^*, \nu^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^{n} \nu_j^* g_j(\mathbf{x}) \right) \\
 &\leq f(\mathbf{x}^*) + \sum_{i=1}^{m} \lambda_i^* h_i(\mathbf{x}^*) + \sum_{j=1}^{n} \nu_j^* g_j(\mathbf{x}^*) \\
 &\leq f(\mathbf{x}^*)
\end{align*}
\]

- The two inequalities hold with equality
 - \mathbf{x}^* minimizes the Lagrangian $L(\mathbf{x}, \lambda^*, \nu^*)$
If strong duality holds, x^* for primal, (λ^*, ν^*) for dual

$$f(x^*) = L^*(\lambda^*, \nu^*) = \inf_x \left(f(x) + \sum_{i=1}^{m} \lambda_i^* h_i(x) + \sum_{j=1}^{n} \nu_j^* g_j(x) \right)$$

$$\leq f(x^*) + \sum_{i=1}^{m} \lambda_i^* h_i(x^*) + \sum_{j=1}^{n} \nu_j^* g_j(x^*)$$

$$\leq f(x^*)$$

The two inequalities hold with equality

- x^* minimizes the Lagrangian $L(x, \lambda^*, \nu^*)$
- $\nu_j^* g_j(x^*) = 0$ for all $j = 1, \ldots, n$ so that

$$\nu_j^* > 0 \Rightarrow g_j(x^*) = 0, \quad \text{and} \quad g_j(x^*) < 0 \Rightarrow \nu_j^* = 0$$
Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs \(\tilde{x} \) and \((\tilde{\lambda}, \tilde{\nu}) \)

- **Primal Feasibility:**

 \[
 h_i(\tilde{x}) = 0, \ i = 1, \ldots, n, \quad g_j(\tilde{x}) \leq 0, \ j = 1, \ldots, m
 \]
Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$

- **Primal Feasibility:**

 \[h_i(\tilde{x}) = 0, \quad i = 1, \ldots, n, \quad g_j(\tilde{x}) \leq 0, \quad j = 1, \ldots, m \]

- **Dual Feasibility:**

 \[\tilde{\nu}_j \geq 0, \quad j = 1, \ldots, m \]
Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$

- **Primal Feasibility:**
 \[h_i(\tilde{x}) = 0, \quad i = 1, \ldots, n, \quad g_j(\tilde{x}) \leq 0, \quad j = 1, \ldots, m \]

- **Dual Feasibility:**
 \[\tilde{\nu}_j \geq 0, \quad j = 1, \ldots, m \]

- **Complementary Slackness:**
 \[\tilde{\nu}_j g_j(\tilde{x}) = 0, \quad j = 1, \ldots, m \]
Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs \(\tilde{x}\) and \((\tilde{\lambda}, \tilde{\nu})\)

- **Primal Feasibility:**
 \[h_i(\tilde{x}) = 0, \quad i = 1, \ldots, n, \quad g_j(\tilde{x}) \leq 0, \quad j = 1, \ldots, m \]

- **Dual Feasibility:**
 \[\tilde{\nu}_j \geq 0, \quad j = 1, \ldots, m \]

- **Complementary Slackness:**
 \[\tilde{\nu}_j g_j(\tilde{x}) = 0, \quad j = 1, \ldots, m \]

- **Gradient condition:**
 \[\nabla f(\tilde{x}) + \sum_{i=1}^{n} \tilde{\lambda}_i \nabla h_i(\tilde{x}) + \sum_{j=1}^{m} \tilde{\nu}_j \nabla g_j(\tilde{x}) = 0 \]
Karush-Kuhn-Tucker (KKT) Conditions

Necessary conditions satisfied by any primal and dual optimal pairs \(\tilde{x} \) and \((\tilde{\lambda}, \tilde{\nu}) \)

- Primal Feasibility:
 \[
 h_i(\tilde{x}) = 0, \quad i = 1, \ldots, n, \quad g_j(\tilde{x}) \leq 0, \quad j = 1, \ldots, m
 \]

- Dual Feasibility:
 \[
 \tilde{\nu}_j \geq 0, \quad j = 1, \ldots, m
 \]

- Complementary Slackness:
 \[
 \tilde{\nu}_j g_j(\tilde{x}) = 0, \quad j = 1, \ldots, m
 \]

- Gradient condition:
 \[
 \nabla f(\tilde{x}) + \sum_{i=1}^{n} \tilde{\lambda}_i \nabla h_i(\tilde{x}) + \sum_{j=1}^{m} \tilde{\nu}_j \nabla g_j(\tilde{x}) = 0
 \]

- The conditions are sufficient for a convex problem.

Instructor: Arindam Banerjee

Constrained Optimization, Duality