Restricted Eigenvalue Properties for Correlated Gaussian Designs

Garvesh Raskutti, Martin Wainwright, Bin Yu

March 24, 2014
Outline

- Introduction
- Various conditions on design matrix
 - Restricted Nullspace condition
 - Restricted Isometry Property
 - Restricted Eigenvalue Condition
- Main results
- Proof of result
- Application examples
High-dimensional sparse models

\[y = X\beta^* + w, \quad y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}, w \sim (0, \sigma^2 I_{n \times n}), p \gg n \]

Assumption of exact sparsity

\[S(\beta^*) := \{j \in \{1, \ldots, p\} | \beta_j^* \neq 0\}, \quad |S| \leq s \]

Problem reduces to: Find \(\hat{\beta} \) close to \(\beta^* \) such that \(\|\beta\|_0 \leq s \)

Convex relaxation: Use \(\ell_1 \)-norm

Basis pursuit: \(\hat{\beta} \in \arg \min_{\beta \in \mathbb{R}^p} \|\beta\|_1 \) such that \(X\beta = y \)

Lasso: \(\hat{\beta} \in \arg \min_{\beta \in \mathbb{R}^p} \{\|y - X\beta\|_2^2 + \lambda\|\beta\|_1\} \)

Under what conditions on matrix \(X \) can we recover \(\hat{\beta} \)?
Restricted Nullspace condition

- Define any set $S \subset \{1, \ldots, p\}$
- Notations: n - number of observations, p - number of covariates, k - sparsity level
- For some constant $\alpha \geq 1$, define the set
 \[C(S; \alpha) := \{ \theta \in \mathbb{R}^p \mid \|\theta_{S^c}\|_1 \leq \alpha\|\theta_S\|_1 \} \]

Restricted Nullspace condition

For a given sparsity index $k \leq p$, the matrix X satisfies the restricted nullspace (RN) condition of order k if $\text{null}(X) \cap C(S; 1) = \{0\}$ for all subsets of cardinality k

- A sufficient and necessary condition for exact recovery in the noisless setting
For a matrix X define for every integer $1 \leq s \leq |S|$, where $S \subset \{1, ..., p\}$, define the s-restricted isometry constants δ_s to be the smallest quantity such that X_S obeys

$$(1 - \delta_s)\|\beta\|_2^2 \leq \|X_S\beta\|_2^2 \leq (1 + \delta_s)\|\beta\|_2^2$$

for all subsets $S \subset \{1, ..., p\}$ of cardinality at most s, and all real coefficients $(\beta_j)_{j \in S}$

RIP requires $\frac{1+\delta}{1-\delta} = \frac{\lambda_{\text{max}}(X_S)}{\lambda_{\text{min}}(X_S)} = \kappa$ to be close to 1

X^TX/n should be close to identity matrix \rightarrow covariates cannot be strongly correlated

Random matrices with i.i.d sub-Gaussian entries satisfy this property w.h.p with n almost linearly scaling with k
Restricted Eigenvalue Condition

A $p \times p$ sample covariance matrix $X^T X / n$ satisfies the restricted eigenvalue (RE) condition over S with parameters $(\alpha, \gamma) \in [1, \infty) \times (0, \infty)$ if

$$\frac{1}{n} \theta^T X^T X \theta \geq \frac{1}{n} \|X \theta\|_2^2 \geq \gamma^2 \|\theta\|_2^2 \quad \forall \theta \in C(S; \alpha)$$

- Weaker than the RIP condition
- $X^T X / n$ satisfies RE condition of order k if above condition is satisfied for all subsets S, $|S| = k$
- If X satisfies RE condition then $\|\hat{\beta} - \beta^*\|_2 = O(\sqrt{k \log p/n})$
- Does $X \in \mathbb{R}^{n \times p}$, $X_i \sim N(0, \Sigma)$ satisfy the RE condition for any Σ?
Main Results

- Linear model \(y_i = X_i^T \beta + w_i, X_i \sim N(0, \Sigma) \)

- Define: \(\rho^2(\Sigma) = \max_{j=1,\ldots,p} \Sigma_{jj} \)

Theorem 1

For any Gaussian random design \(X \in \mathbb{R}^{n \times p} \) with i.i.d. \(N(0, \Sigma) \) rows, there are universal positive constants \(c, c' \) such that

\[
\frac{\|Xv\|_2}{\sqrt{n}} \geq \frac{1}{4} \|\Sigma^{1/2}v\|_2 - 9\rho(\Sigma)\sqrt{\frac{\log p}{n}} \|v\|_1, \quad \text{for all } v \in \mathbb{R}^p
\]

with probability at least \(1 - c'\exp(-cn) \)

- Insight into eigenstructure of sample covariance matrix \(\hat{\Sigma} = X^TX/n \)

Garvesh Raskutti, Martin Wainwright, Bin Yu

Restricted Eigenvalue Properties for Correlated Gaussian Designs
Corollary 1 (Restricted eigenvalue property)

Suppose that Σ satisfies the RE condition of order k with parameters (α, γ). Then for universal positive constants c, c', c'', if the sample size satisfies

$$n > c'' \frac{\rho^2(\Sigma)(1 + \alpha)^2}{\gamma^2} k \log p$$

then the matrix $\hat{\Sigma} = X^T X / n$ satisfies the RE condition with parameters $(\alpha, \frac{\gamma}{8})$ with probability at least $1 - c' \exp(-cn)$.

Proof: Use $\|v\|_1 = \|v_S\|_1 + \|v_{S^c}\|_1 \leq (1 + \alpha) \sqrt{k} \|v\|_2$ and $\|\Sigma^{1/2} v\|_2 \geq \gamma \|v\|_2$ and substitute in Theorem 1, we get

$$9(1 + \alpha) \rho(\Sigma) \sqrt{\frac{k \log p}{n}} \leq \frac{\gamma}{8}$$

The sample size scales as $\Omega(k \log p)$ as long as $\rho(\Sigma)$ is bounded.
Proof outline

- The result bounds $\|Xv\|_2$ in terms of $\|\Sigma^{1/2}v\|$ and $\|v\|_1$ for all v w.h.p.

- Step 1: Consider set: $V(r) := \{v \in \mathbb{R}^p \mid \|\Sigma^{1/2}v\|_2 = 1, \|v\|_1 \leq r\}$
 - Condition holds trivially when $\Sigma^{1/2}v = 0$
 - For any vector $v \in \mathbb{R}^p$ consider $\tilde{v} = v/\|\Sigma^{1/2}v\|$. Condition is scale invariant. Hence holds for v if it holds for \tilde{v}.

- Step 2: Define random variable:
 \[M(r, X) := 1 - \inf_{v \in V(r)} \frac{\|Xv\|_2}{\sqrt{n}} = \sup_{v \in V(r)} \left\{ 1 - \frac{\|Xv\|_2}{\sqrt{n}} \right\} \]
 - Step 2a: Upper bound $\mathbb{E}[M(r, X)]$
 - Step 2b: Establish concentration around the mean

- Step 3: Peeling argument to show that analysis holds with high probability and uniformly for all r
Step 2a: Bounding the expectation

Lemma 1

For any radius $r > 0$ such that $V(r)$ is non-empty, we have

$$\mathbb{E}[M(r, X)] \leq \frac{1}{4} + 3\rho(\Sigma)\sqrt{\frac{\log p}{n}} r$$

- Define the Gaussian random variable $Y_{u,v} := u^TXv$

- $\inf_{v \in V(r)} \|Xv\|_2 = -\inf_{v \in V(r)} \sup_{u \in S^{n-1}} u^TXv = \sup_{v \in V(r)} \inf_{u \in S^{n-1}} u^TXv$

- Upper bound $1 + \mathbb{E}[\sup_{v \in V(r)} \inf_{u \in S^{n-1}} Y_{u,v}]$
Step 2a: Bounding the expectation

Gordon’s inequality

Suppose that \(\{Y_{u,v}, (u, v) \in U \times V\} \) and \(\{Z_{u,v}, (u, v) \in U \times V\} \) are two zero-mean Gaussian processes on \(U \times V \). Let \(\sigma(.) \) denote the standard deviation of its argument. Suppose these two processes satisfy the inequality

\[
\sigma(Y_{u,v} - Y_{u',v'}) \leq \sigma(Z_{u,v} - Z_{u',v'}), \quad \text{for all pairs} \ (u, v) \ \text{and} \ (u', v') \in U \times V
\]

where equality holds when \(v = v' \). Then we are guaranteed that

\[
\mathbb{E} \left[\sup_{v \in V} \inf_{u \in U} Y_{u,v} \right] \leq \mathbb{E} \left[\sup_{v \in V} \inf_{u \in U} Z_{u,v} \right]
\]

- Find a \(Z_{u,v} \) such that the above condition is satisfied and computing \(\mathbb{E} \left[\sup_{v \in V} \inf_{u \in U} Z_{u,v} \right] \) is easy.
Step 2a: Bounding the expectation

- X can be expressed as $X = W \Sigma^{1/2}$, where $W \in \mathbb{R}^{n \times p}$ is a matrix with i.i.d. $N(0, 1)$ entries. Therefore $Y_{u,v} = u^T W \Sigma^{1/2} v = u^T W \tilde{v}$

- Define $\tilde{v} = \Sigma^{1/2} v$

- Compute $\sigma^2(Y_{u,v} - Y_{u',\tilde{v}'})$

$$\sigma^2(Y_{u,v} - Y_{u',\tilde{v}'}) := \mathbb{E} \left(\sum_{i=1}^{n} \sum_{j=1}^{p} W_{i,j} (u_i \tilde{v}_j - u'_i \tilde{v}'_j) \right)^2 = \| u \tilde{v}^T - (u') (\tilde{v}')^T \|_F^2$$

- Define $Z_{u,v} = \tilde{g}^T u + \tilde{h}^T \Sigma^{1/2} v = \tilde{g}^T u + \tilde{h}^T \tilde{v}$, where $\tilde{g} \sim N(0, I_{n \times n})$, $\tilde{h} \sim N(0, I_{p \times p})$

- Compute $\sigma^2(Z_{u,v} - Z_{u',\tilde{v}'})$

$$\sigma^2(Z_{u,v} - Z_{u',\tilde{v}'}) = \| u - u' \|^2_2 + \| v - v' \|^2_2$$

- Condition in Gordon’s inequality is satisfied
Step 2a: Bounding the expectation

- Applying Gordon’s inequality

\[
\mathbb{E}\left[\sup_{v \in V(r)} \inf_{u \in S^{n-1}} u^T X v \right] \leq \mathbb{E}\left[\inf_{u \in S^{n-1}} \tilde{g}^T u \right] + \mathbb{E}\left[\sup_{v \in V(r)} \tilde{h}^T \Sigma^{1/2} v \right]
\]

\[
= -\mathbb{E}[\|\tilde{g}\|_2] + \mathbb{E}\left[\sup_{v \in V(r)} \tilde{h}^T \Sigma^{1/2} v \right]
\]

- By definition of \(V(r) \)

\[
\sup_{v \in V(r)} |\tilde{h}^T \Sigma^{1/2} v| \leq \sup_{v \in V(r)} \|v\|_1 \|\Sigma^{1/2} \tilde{h}\|_{\infty} \leq r \|\Sigma^{1/2} \tilde{h}\|_{\infty}
\]

- Each element \((\Sigma^{1/2} \tilde{h})_j\) is zero-mean Gaussian with variance \(\Sigma_{jj}\). According to known results on Gaussian maxima

\[
\mathbb{E}[\|\Sigma^{1/2} \tilde{h}\|_{\infty}] \leq 3 \sqrt{\rho^2(\Sigma)} \log p, \text{ where } \rho^2(\Sigma) = \max_j \Sigma_{jj}
\]

- \(\mathbb{E}[\|\tilde{g}\|_2] \geq \frac{3}{4} \sqrt{n}\) for all \(n \geq 10 \) by standard \(\chi^2 \) tail bounds

- Putting together the pieces gives us the required result
Step 2b: Concentration around the mean

Lemma 2

For any r such that $V(r)$ is non-empty, we have

$$\mathbb{P} \left[M(r, X) \geq \frac{3t(r)}{2} \right] \leq 2\exp(-nt^2(r)/8)$$

where

$$t(r) := \frac{1}{4} + 3r \rho(\Sigma) \sqrt{\frac{\log p}{n}}$$

Following from previous result suffices to show that

$$\mathbb{P}[|M(r, X) - \mathbb{E}[M(r, X)]| \geq t(r)/2] \leq 2\exp(-nt^2(r)/8)$$
A function $F : \mathbb{R}^m \to \mathbb{R}$ is Lipschitz with constant L if

$$|F(x) - F(y)| \leq L \|x - y\|_2 \quad \forall x, y \in \mathbb{R}^m$$

Theorem

Let $w \sim N(0, I_{m \times m})$ be an m-dimensional Gaussian random variable. Then for any L-Lipschitz function F, we have

$$\mathbb{P}[|F(w) - \mathbb{E}[F(w)]| \geq t] \leq 2\exp\left(-\frac{t^2}{2L^2}\right), \quad \forall t \geq 0$$

The tail bound above will follow if we show the Lipschitz constant L is less than $\frac{1}{\sqrt{n}}$.

Garvesh Raskutti, Martin Wainwright, Bin Yu

Restricted Eigenvalue Properties for Correlated Gaussian Designs
Step 2b: Concentration around the mean

- Define $h(W) = \sup_{v \in V(r)} (1 - \|W\Sigma^{1/2}v\|_2 / \sqrt{n})$

- Proof:

$$\sqrt{n}[h(W) - h(W')] = \sup_{v \in V(r)} -\|W\Sigma^{1/2}v\|_2 - \sup_{v \in V(r)} \|W'\Sigma^{1/2}v\|_2$$

$$= -\|W\Sigma^{1/2}\hat{v}\|_2 - \sup_{v \in V(r)} (-\|W'\Sigma^{1/2}v\|_2)$$

$$\leq \|W'\Sigma^{1/2}\hat{v}\|_2 - \|W\Sigma^{1/2}\hat{v}\|_2$$

$$\leq \sup_{v \in V(r)} (\|\Sigma^{1/2}v\|_2)\|W - W'\|_2$$

$$\leq \sup_{v \in V(r)} (\|\Sigma^{1/2}v\|_2)\|W - W'\|_F$$

$$= \|W - W'\|_F$$

Garvesh Raskutti, Martin Wainwright, Bin Yu

Restricted Eigenvalue Properties for Correlated Gaussian Designs
Step 3: Peeling argument

- $V(r)$ defined such that $\|v\|_1 \leq r$. Need to prove Theorem 1 for all r

- Argument at a high level is as follows

 - Theorem holds for all v in set $V(r)$
 - Consider the event

 $$T := \{ \exists v \in \mathbb{R}^p \text{ s.t. } \| \Sigma^{1/2} v \| = 1 \text{ and } (1 - \|Xv\|_2 / \sqrt{n}) \geq 3t(\|v\|_1 / 2) \}$$

 - Bound $\mathbb{P}(T)$ by a union bound over all suitably defined subsets $V(r)$

- Peeling argument yields the bound $\mathbb{P}[T^c] \geq 1 - c \exp(-c'n)$ for some constants c, c'
Step 3: Peeling argument

- Define: An objective function $f(v; X)$, $v \in \mathbb{R}^p$, X is a random vector h is any function $h : \mathbb{R}^p \to \mathbb{R}$

Lemma 3

Suppose that $g(r) \geq \mu$ for all $r \geq 0$, and that there exists some constant $c > 0$ such that for all $r > 0$, we have the tail bound

$$P\left[\sup_{v \in A, h(v) \leq r} f(v; X) \geq g(r) \right] \leq 2 \exp(-ca_n g^2(r))$$

for $a_n > 0$. Define event $E := \{ \exists v \in A \text{ such that } f(v; X) \geq 2g(h(v)) \}$

Then $P[E] \leq \frac{2 \exp(-4ca_n \mu^2)}{1-\exp(-4ca_n \mu^2)}$

In this case: $f(v, X) = 1 - \|Xv\|_2^2/\sqrt{n}$, $h(v) = \|v\|_1$, $g(r) = 3t(r)/2$, $a_n = n$, $A = \{ v \in \mathbb{R}^p \mid \|\Sigma^{1/2} v\|_2 = 1 \}$, and $\mu = 3/8$
Applications: Toeplitz matrices

- Toeplitz matrix structure

\[
\begin{pmatrix}
 a & b & c & d & e \\
 f & a & b & c & d \\
 g & f & a & b & c \\
 h & g & f & a & b \\
 i & h & g & f & a \\
\end{pmatrix}
\]

Consider Σ has Toeplitz structure with $\Sigma_{jj} = a^{|i-j|}$ for some $a \in [0, 1)$. Common in autoregressive processes.

- Minimum eigenvalue $\lambda_{\text{min}}(\Sigma) = 1 - a > 0$, independent of p.

- Condition number $\kappa = \lambda_{\text{max}}(\Sigma_{SS}) / \lambda_{\text{min}}(\Sigma_{SS})$ grows as parameter a increases towards 1.

- RE property satisfied with high probability but RIP violated once $a < 1$ is sufficiently large.
Applications: Spiked identity model

- Spiked identity model
 \[\Sigma := (1 - a)I_p + a \vec{1}\vec{1}^T, \ a \in [0, 1) \text{ and } \vec{1} \in \mathbb{R}^p \text{ is the vector of all ones} \]

- Minimum eigenvalue: \(\lambda_{min}(\Sigma) = 1 - a, \ \rho^2(\Sigma) = 1 \)
- According to Corollary 1: Sample covariance matrix \(\hat{\Sigma} = X^TX/n \) will satisfy RE property with high probability when \(n = \Omega(k \log p) \)
- For any \(|S| = k \) consider \(\Sigma_{SS} \)
 \[\frac{\lambda_{max}(\Sigma_{SS})}{\lambda_{min}(\Sigma_{SS})} = \frac{1 + a(k - 1)}{1 - a} \]
- Condition number diverges as \(k \) increases
Highly degenerate covariance matrices

- Σ is not full rank
- Generate a degenerate covariance matrix
 - Sample n times from a $N(0, \Sigma)$ distribution
 - Sample covariance matrix $\hat{\Sigma} = X^T X / n, n < p$
 - Therefore $\hat{\Sigma}$ is rank degenerate
 - According to Corollary 1 $\hat{\Sigma}$ satisfies RE property of order k with high probability
 - Now sample n times from $N \sim (0, \hat{\Sigma})$.

According to Corollary 1 resampled empirical covariance will also have RE property

Example relevant for a bootstrap-type calculation for assessing errors of the Lasso
Conclusions

- One of the first papers to consider correlated Gaussian matrices
- Result uses Gordon’s inequality applicable to only Gaussian design matrices
Thank you