INFORMED SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1–2
Outline

♦ Best-first search
♦ A* search
♦ Heuristics
function Tree-Search(problem, fringe) returns a solution, or failure

fringe ← Insert(Make-Node(Initial-State[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test[problem] applied to State(node) succeeds return node
 fringe ← InsertAll(Expand(node, problem), fringe)

A strategy is defined by picking the order of node expansion
Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
 greedy search
 A* search
Romania with step costs in km

Straight-line distance to Bucharest

- **Arad**: 366
- **Bucharest**: 0
- **Craiova**: 160
- **Dobrogea**: 242
- **Eforie**: 161
- **Fagaras**: 178
- **Giurgiu**: 77
- **Hirsova**: 151
- **Iasi**: 226
- **Lugoj**: 244
- **Mehadia**: 241
- **Neamt**: 234
- **Oradea**: 380
- **Pitesti**: 98
- **Rimnicu Vilcea**: 193
- **Sibiu**: 253
- **Timisoara**: 329
- **Urziceni**: 80
- **Vaslui**: 199
- **Zerind**: 374
Greedy search

Evaluation function $h(n)$ (heuristic)

$= \text{estimate of cost from } n \text{ to the closest goal}$

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that \textbf{appears} to be closest to goal
Greedy search example

Arad
366
Greedy search example

- Sibiu: 253
- Timisoara: 329
- Zerind: 374

Start from Arad and explore the path with the smallest cost.
Greedy search example

Graph showing a greedy search example with cities and distances.
Greedy search example

Diagram:

- Arad
 - Sibiu
 - Arad 366
 - Fagaras
 - Oradea 380
 - Rimnicu Vilcea 193
 - Bucharest 0
 - Sibiu 253
- Timisoara 329
- Zerind 374
Properties of greedy search

Complete??
Properties of greedy search

Complete?? No–can get stuck in loops, e.g., with Oradea as goal,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time??
Properties of greedy search

Complete: No—can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time: $O(b^m)$, but a good heuristic can give dramatic improvement

Space:
Properties of greedy search

Complete No–can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time \(O(b^m) \), but a good heuristic can give dramatic improvement

Space \(O(b^m) \)—keeps all nodes in memory

Optimal
Properties of greedy search

Complete? No–can get stuck in loops, e.g.,
\[\text{Iasi} \rightarrow \text{Neamt} \rightarrow \text{Iasi} \rightarrow \text{Neamt} \rightarrow \]
Complete in finite space with repeated-state checking

Time? \(O(b^m) \), but a good heuristic can give dramatic improvement

Space? \(O(b^m) \)—keeps all nodes in memory

Optimal? No
A* search

Idea: avoid expanding paths that are already expensive

Evaluation function $f(n) = g(n) + h(n)$

- $g(n)$ = cost so far to reach n
- $h(n)$ = estimated cost to goal from n
- $f(n)$ = estimated total cost of path through n to goal

A* search uses an admissible heuristic
i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n.
(Also require $h(n) \geq 0$, so $h(G') = 0$ for any goal G.)

E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal
A* search example

Arad

366 = 0 + 366
A* search example

- Sibiu: 393 = 140 + 253
- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374
A* search example

Chapter 4, Sections 1–2
A* search example

Chapter 4, Sections 1–2
A* search example

Chapter 4, Sections 1–2 21
A* search example

Chapter 4, Sections 1–2
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[f(G_2) = g(G_2) \quad \text{since} \quad h(G_2) = 0 \]
\[> g(G_1) \quad \text{since} \quad G_2 \text{ is suboptimal} \]
\[\geq f(n) \quad \text{since} \quad h \text{ is admissible} \]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A^*

Complete??
Properties of A^*

Complete? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?
Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space??
Properties of A*

Complete? Yes, unless there are infinitely many nodes with \(f \leq f(G) \)

Time? Exponential in \([\text{relative error in } h \times \text{length of soln.}]\)

Space? Keeps all nodes in memory

Optimal?
Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$
A* expands some nodes with $f(n) = C^*$
A* expands no nodes with $f(n) > C^*$
Proof of lemma: Consistency

A heuristic is consistent if

\[h(n) \leq c(n, a, n') + h(n') \]

If \(h \) is consistent, we have

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n, a, n') + h(n') \\
 &\geq g(n) + h(n) \\
 &= f(n)
\end{align*}
\]

i.e., \(f(n) \) is nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{|c|c|c|c|}
\hline
7 & 2 & 4 & \\
\hline
5 & 6 & & \\
\hline
8 & 3 & 1 & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
1 & 2 & 3 & \\
\hline
4 & 5 & 6 & \\
\hline
7 & 8 & & \\
\hline
\end{array}
\]

Start State
Goal State

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
7 & 2 & 4 \\
5 & \text{Start State} & 6 \\
8 & 3 & 1 \\
\end{array}
\]
\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & \text{Goal State} & 6 \\
7 & 8 & \text{Goal State} \\
\end{array}
\]

\[h_1(S) =?? \ 6 \]
\[h_2(S) =?? \ 4+0+3+3+1+0+2+1 = 14 \]
Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible)
then h_2 dominates h_1 and is better for search

Typical search costs:

$d = 14$ \quad IDS = 3,473,941 \text{ nodes} \\
 A^*(h_1) = 539 \text{ nodes} \\
 A^*(h_2) = 113 \text{ nodes} \\

$d = 24$ \quad IDS \approx 54,000,000,000 \text{ nodes} \\
 A^*(h_1) = 39,135 \text{ nodes} \\
 A^*(h_2) = 1,641 \text{ nodes} \\

Given any admissible heuristics $h_a, h_b,$

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a, h_b
Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$
and is a lower bound on the shortest (open) tour
Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
 – incomplete and not always optimal

A* search expands lowest $g + h$
 – complete and optimal
 – also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems