Online Search Agents and Unknown Environments

CSCI 4511
Thursday, February 12th, 2015
So far..

• Agents using offline search algorithms:
 – Compute a **full solution** before acting
 – **Only** after solution is found, take action
So far..

• Agents using LOCAL search algorithms:
 – Still have access to the full state space
 – But only store current state and successors
Now..

• Online search:
 – Agent doesn't know entire state space
 • Just knows his current state and possible actions.
 – Interleaves computation and action:
 • Takes an action
 • Observes the environment
 • Compute the next action
 • Repeat
• Online search is good idea when:
 – Dynamic or semi dynamic environments
 – Non-deterministic domains
• Online search is NECESSARY when:
 – Unknown environments:
 • What are the states?
 • What do my actions do?

• Agent faces an exploration problem
Examples

• Robot motion
 – Exploration, finding exit

• Newborn
Online search problems

- Deterministic and Observable env.

- Agents know:
 - Actions(state)
 - Step-cost function $c(s, a, s')$
 - Goal-test

- Agents do not know:
 - Effect of their actions
 - State space
Figure 4.18 A simple maze problem. The agent starts at S and must reach G, but knows nothing of the environment.
Objective

• Typically:
 • Reach the goal while minimizing cost
 • Can also be to explore environment

• Performance: state space explored vs entire state space
Problems

• Dead ends:
 – If actions not reversible and all actions tried

• For now, assume safely explorable state space
 – Example: 8-puzzle problem, mazes
Online search agents

• Compare offline vs online
 – Think about A* or UCS

 – Can we expand a node in **any** location?

 – Physical location

 – Can we adapt a known search algorithm to online setting?
Online search agents

- Compare offline vs online
 - Think about A* or UCS
 - Can we expand a node in *any* location?
 - Physical location
- Online DFS: only with reversible actions
function ONLINE-DFS-AGENT(s') returns an action

inputs: s', a percept that identifies the current state

static: result, a table, indexed by action and state, initially empty
unexplored, a table that lists, for each visited state, the actions not yet tried
unbacktraacked, a table that lists, for each visited state, the backtracks not yet tried
s, a, the previous state and action, initially null

if GOAL-TEST(s') then return stop
if s' is a new state then unexplored[s'] ← ACTIONS(s')
if s is not null then do
 result[a, s] ← s'
 add s to the front of unbacktraacked[s']
if unexplored[s'] is empty then
 if unbacktraacked[s'] is empty then return stop
 else a ← an action b such that result[b, s'] = POP(unbacktraacked[s'])
else a ← POP(unexplored[s'])
s ← s'
return a

Figure 4.20 An online search agent that uses depth-first exploration. The agent is applicable only in bidirected search spaces.
Online local search

• Remember algorithms discussed last class:
 – Applicable to online search?
Online local search

• Remember algorithms discussed last class:
 – Applicable to online search?
 – Hill-climbing search
Online local search

- Remember algorithms discussed last class:
 - Applicable to online search?
 - Hill-climbing search: Local maxima?
Online local search

• Remember algorithms discussed last class:
 – Applicable to online search?
 – Hill-climbing search: Local maxima?
 – Random Walk!
Figure 4.21 An environment in which a random walk will take exponentially many steps to find the goal.
Online local search

• Remember algorithms discussed last class:
 – Applicable to online search?
 – Hill-climbing search: Local maxima?
 – Random Walk! \rightarrow very inefficient
 – Agents need memory
LRTA*

• Learning Real Time A*
 – Step-cost fcn $c(s, a, s')$
 – 'current best estimate' $H(s)$

• Builds a 'map' based on actions

• Actions not tried assumed to lead to goal
Figure 4.22 Five iterations of LRTA* on a one-dimensional state space. Each state is labeled with $H(s)$, the current cost estimate to reach a goal, and each arc is labeled with its step cost. The shaded state marks the location of the agent, and the updated values at each iteration are circled.
function LRTA*-AGENT(s') returns an action

inputs: s', a percept that identifies the current state

static: result, a table, indexed by action and state, initially empty
H, a table of cost estimates indexed by state, initially empty
s, a, the previous state and action, initially null

if GOAL-TEST(s') then return stop
if s' is a new state (not in H) then $H[s'] ← h(s')$
unless s is null

result[$a, s] ← s'$

$H[s] ← \min_{b \in \text{ACTIONS}(s)} \text{LRTA*-COST}(s, b, \text{result}[b, s], H)$

$a ←$ an action b in \text{ACTIONS}(s') that minimizes \text{LRTA*-COST}(s', b, \text{result}[b, s'], H)$
$s ← s'$

return a

function LRTA*-COST(s, a, s', H) returns a cost estimate

if s' is undefined then return $h(s)$
else return $c(s, a, s') + H[s']$

Figure 4.23 LRTA*-AGENT selects an action according to the values of neighboring states, which are updated as the agent moves about the state space.
LRTA*

- Guaranteed to find goal in environment:
 - Finite
 - Safely explorable
Learning in online search

• Learn a 'map' of the environment
 – (s,a,?)

• Acquire more accurate estimates of cost of a state