Towards An Elastic Application Model for Augmenting the Computing Capabilities of Mobile Devices with Cloud Computing

Presenter: Shravya Rukmannagari

Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, Simon Gibbs, Samsung Information Systems

Some material from Ruisheng Shi
Motivation

Limited resources
- Low frequency
- Small memory
- Battery

Cloud Computing

SaaS, PaaS, IaaS
Motivation (cont.)

IT View of Cloud Computing

Cloud = Web Service Platform

- Cloud is a platform for service delivery
- Push from services into devices

Service Provider Perspective
Motivation (cont.)

Proposed View of Cloud Computing

Cloud = Data/core/network center + API

- Cloud is a platform
- New applications that run across the cloud and device (“elastic applications”)
- API exposes cloud to device apps
- Expand the device into the cloud

User’s Perspective
Ongoing Approaches for Mobile + Cloud

- CloneCloud (HotCloud’09)
 - Clone of phone at cloud
- Splittig applications between device and cloud
 - Dynamic partitioning of applications (MCS’10)
 - Dynamic remote method invocation with managed code (Mobsys’10)
- Dynamic Composable Computing (HotMobile’08)
 - Dynamic composition of functions with mobile devices and surrogates
- Cloudlet (PVC’09)
 - Offloading VM to proximate infrastructure
 - 60-90 sen on VM synthesis
- HW-supported VM migration (Atom) (MobiCase’09)
 - Focus on mobility app
- Elastic Device/Application
 - On application level
 - Dynamic execution configuration
 - More flexible and easy for parallel
Motivation (cont.)

One approach to realize user’s perspective: Duplicate runtime environment of device in cloud (surrogate or clone or cloudlet) – Amazon EC2

- Clone requires physical hardware, I/O between device and clone
- Fails to take advantage of the cloud compute resources
- Increases complexity of device management – Security Protection and data privacy control.

Soln: Develop Elastic Application
The goal of the Elastic Device is to enable development of cross device/cloud applications. The advantages are:

- Remove device constraints, create new classes of powerful applications
- Help realize a new business model for device applications
- Provide developers a transition path to multi/many core
Elastic Device Concept

When device resources are not sufficient

New!

When device resources are sufficient
Elastic Applications (EA)

- EA are **cloud aware** applications

- **Weblets**
 - Define discrete application components
 - Communicate using REST interface
 - Run on device or cloud
 - Can be replicated to handle loads

- **Application GUI**
 - Launches the program
 - Directs the creation of new weblets

- **Manifest**
 - Meta-data of EA
 - Dynamic configuration info
 - Integrity of weblets
 - Policies for each weblet
 - E.g. JVM, network, access control, location
Elastic Devices (ED)

- ED support EAs
 - Enable seamless migration of weblets
 - Manage resources to optimize costs
 - Interface with cloud providers

- Elastic Manager
 - Spawns weblets in demand
 - Migrates weblets to/from cloud
 - Senses resource availability

- Cloud Fabric Interface
 - Exposes cloud services to devices
 - Controls weblets on behalf of EM
 - Start / Stop / Create / Destroy
 - Can provide PaaS or IaaS model
Application Model

- UI may be device dependent, possibilities:
 - Native code
 - HTML+CSS+JavaScript
 - Flash or Silverlight ...
- Weblets are device independent, possibilities:
 - Java bytecode
 - CLR bytecode
 - Python bytecode ...

- Autonomous
- Communicate via HTTP
- Long-living requests
- Dedicated (to a client)
- Persistent data
- Migratable
- Synchronizable

'h' - weblet request handler
'w' - weblet worker
Advantages of EA

• Many-to-one virtualization
 - Seamlessly expand and shrinks of platform capability
• Dynamic user experience
 - User control of expanding/shrinking based on factors such as battery consuming, monetary cost, latency/throughput, etc.
• Device flexibility
 - CE device computation and storage capabilities need not be designed to satisfy the most demanding applications.
• Dependindability
 - Migrating applications to cloud when device is low in battery/ weak signal
• Future proof:
 - Move app from cloud to device, extend app lifetime, reduce development cost
Weblets vs Web Services

<table>
<thead>
<tr>
<th>Weblet</th>
<th>Web Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP (REST interface)</td>
<td>HTTP (REST or SOAP interface)</td>
</tr>
<tr>
<td>single client</td>
<td>many clients</td>
</tr>
<tr>
<td>short-lived & long-lived requests</td>
<td>short-lived requests</td>
</tr>
<tr>
<td>dynamic endpoints (may migrate)</td>
<td>fixed endpoints (eg, http://www.google.com)</td>
</tr>
<tr>
<td>lifetime is client dependent</td>
<td>lifetime is client independent</td>
</tr>
<tr>
<td>runs on servers or client (cloud or device)</td>
<td>runs on servers</td>
</tr>
<tr>
<td>push to client</td>
<td>NA / non-standard</td>
</tr>
</tbody>
</table>
Elasticity Patterns
Cost Model

Sensing (Inputs)
- battery level
- network quality
- device loads
- cloud loads
- aggregated performance data

Goal (examples)
- minimize costs
- maximize performance
- minimize power
- maximize robustness
- maximize security

Constraints
- resources
- cost model
- application requirements

Actions (Outputs)
1) allocation & migration (at launch & run-time)
 - weblet
 - cloud
 - device
 - WiFi
 - 3G

2) connection selection & switching
 - UI
 - w

3) replication
 - wi
 - (weblet pool)

4) shadowing
 - UI
 - w
 - w'
Cost-Optimal Execution Configuration

< Training System >

X (Status Vector) Y (SWA configuration)

Log data
Run the training system for all configurations and collect related status vectors

Training data
$(x, y)_1$, $(x, y)_2$, \ldots, $(x, y)_n$

Cost Prediction

Offline computation

< User Device >

CPU Usage
Processing time
Memory Usage
Cloud usage cost

p_1, p_2, p_3, p_4, p_M

p (User preference vector)

Preferred cost-optimal SWA configuration decision

y (Suggested SWA configuration for the same-type devices)

(# of device SWA’s, # of Cloud SWA’s)
Reference Architecture

- Elastic application package including UI and weblets.
- Cloud nodes running on Amazon EC2 instances
- Web Service –based CFI
- Application installation on both cloud and device sides
SDK Development

- C# binding only so far
- A weblet is an independent functional unit of an application
- A weblet resembles an embedded or dedicated web server
 - presents a web service interface accessed via HTTP
- AppRoot is root UI of an application
- Actions are HTTP requests
Elastic Image Processing

on device: image processing
on cloud: image processing
Elastic Augmented Video

Samsung Q1

ElasticAV Application
(identify, track & replace “target” images)

ElasticAV App
Tracker Compositor
Camera

Splitter
Matcher 1
Matcher 2
Matcher 3

planar object recognition and replacement

on device: feature point extraction from video, tracking, compositing
on cloud: matching live features against library of target images
Elastic Augmented Reality

on device: using compass and GPS to align POI markers with live video from camera
on cloud: POI service and crowd simulator (gives # people in proximity to POI's)
Experimental Validation

- Elastic Image Processing application
 - Running on device only and on lab cloud cluster
 - LAMP as web service stack on each cloud node
 - Measure upload/ download bandwidth, workload, cpu usage, and available memory.
Throughput vs. Configurations
CPU usage rate vs. Configurations
Ongoing and Future Work

• Implementation of more general cost optimization
 - With more sensing data from both device and cloud
 - Cost model as a service

• Migration and replicate of code and data
 - Some synchronization protocols
 - Allow offline

• Security and privacy
 - Mutual authentication between weblets on device and cloud
 - Authorization delegation to weblets running on public cloud
Thank You!!