Csci 2021 Class Web Pages

Departmental Class Web Page:
 - Public access without login
 - Course syllabus, schedule, lecture notes, other useful info
 http://www-users.cselabs.umn.edu/classes/Spring-2016/csci2021/
 - You should read course *syllabus* carefully for all course policies, personnel info, and course logistics.

Moodle 2.8 Web page:
 - Use your university x500 account to access
 - Class forums, assignment submission, exam info
 https://ay15.moodle.umn.edu/course/view.php?id=13068
Data Representation:
Bits, Bytes, and Integers

CSci 2021 - Machine Architecture and Organization

Professor Pen-Chung Yew

With sides from Randy Bryant and Dave O’Hallaron
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Representations in memory, pointers, strings
Binary Representations

- Each bit is 0 or 1
- Why bits? Electronic Implementation
 - Easy to store with bistable elements, e.g. switches, transistors,...
 - Reliably transmitted on noisy wires
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions),... and represent and manipulate numbers, sets, strings, etc...

![Diagram showing voltage levels for binary representation]

- 0V to 1.1V
- 0.2V to 0.9V
Base-2 number representation

- **Decimal to Binary**
 - Represent 152_{10} as 10011000_2
 - Represent 1.20_{10} as $1.0011[0011]..._2$ (binary repetend)
 - Represent 1.51×10^2 as $1.0010001_2 \times 2^7$

- **Binary to Decimal**
 - Represent 10110_2 as 22_{10}
 - Represent 101.101_2 as 5.625_{10}
 - Represent 1.1011×2^3 as 1.35×10^1
Encoding Byte Values

- **Byte = 8 bits**
 - **Binary**: 00000000₂ to 11111111₂
 - **Decimal**: 0₁₀ to 255₁₀
 - **Hexadecimal**: 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37BE₁₆ in C as
 - 0xFA1D37BE
 - 0xfa1d37be
 - 0xFa1D37bE

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>–</td>
<td>–</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Representations in memory, pointers, strings
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

\[
\begin{array}{c|cc}
A & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

Not
- \(\sim A = 1 \) when \(A=0 \)

\[
\begin{array}{c|c}
A & \sim \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]

Or
- \(A \mid B = 1 \) when either \(A=1 \) or \(B=1 \)

\[
\begin{array}{c|cc}
A & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Exclusive-Or (Xor)
- \(A^{\wedge}B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

\[
\begin{array}{c|cc}
A & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \lor \sim A \& B = A^{\land}B \]
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied *bitwise*

```
01101001 & 01010101 = 01000001
01101001 | 01010101 = 01111101
01101001 ^ 01010101 = 00111100
01101001 ~ 01010101 = 10101010
```

- All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

- **Representation**
 - Width \(w \) bit vector represents subsets of \(\{0, \ldots, w-1\} \)
 - \(a_j = 1 \) if \(j \in A \)
 - \[01101001\] \(A = \{ 0, 3, 5, 6 \} \)
 - \[76543210\]
 - \[01010101\] \(A = \{ 0, 2, 4, 6 \} \)
 - \[76543210\]

- **Operations**
 - & Intersection \[01000001\] \(\{ 0, 6 \} \)
 - | Union \[01111101\] \(\{ 0, 2, 3, 4, 5, 6 \} \)
 - ^ Symmetric difference \[00111100\] \(\{ 2, 3, 4, 5 \} \)
 - ~ Complement \[10101010\] \(\{ 1, 3, 5, 7 \} \)
Bit-Level Operations in C

- **Operations &,# V, ~, \^ Available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (char data type) (1 byte)**
 - \(\sim 0x41 = 0xBE \)
 - \(\sim 01000001_2 = 10111110_2 \)
 - \(\sim 0x00 \rightarrow 0xFF \)
 - \(\sim 00000000_2 = 11111111_2 \)
 - \(0x69 \& 0x55 = 0x41 \)
 - \(01101001_2 \& 01010101_2 = 01000001_2 \)
 - \(0x69 \mid 0x55 = 0x7D \)
 - \(01101001_2 \mid 01010101_2 = 01111101_2 \)
Contrast: Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1

- Examples (char data type)
 - !0x41 = 0x00 (different from ~ operation)
 - !0x00 = 0x01
 - !!0x41 = 0x01
 - 0x69 && 0x55 = 0x01
 - 0x69 || 0x55 = 0x01
Contrast: Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

- Examples (char data type)
 - !0x41 ➞ 0x00
 - !0x00 ➞ 0x01
 - !!0x41 ➞ 0x01
 - 0x69 && 0x55 ➞ 0x01
 - 0x69 || 0x55 ➞ 0x01

Watch out for && vs. & (and || vs. |)… one of the more common oopsies in C programming
Shift Operations

- **Left Shift:** $x \ll y$
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0’s on right
- **Right Shift:** $x \gg y$
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - **Logical shift**
 - Fill with 0’s on left
 - **Arithmetic shift**
 - Replicate most significant bit on left

- **Undefined Behavior**
 - Shift amount < 0 or \geq word size
Programming Assignment #1 *(Data Lab)* will be issued today, due in 2 weeks on *2/8/2016 11:55pm Monday*

- Download *Data Lab* from class Moodle page
- This lab asks you to manipulate bit strings using restricted instruction types and counts
- Each problem in the assignment has different degrees of difficulty, start with easier ones first.
- Feel free to use class *Forum* to ask questions and get information from TA or other students
- TA will discuss Data Lab in Thur recitation sessions.
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Representations in memory, pointers, strings
- Summary
Encoding Unsigned and Signed Integers

Unsigned (B2U)

\[
B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i
\]

Two’s Complement (B2T)

\[
B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i
\]

- **Sign Bit**
 - For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

```
short int x = 15213;
short int y = -15213;
```

- **In C, data type short is 2 bytes long**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>001111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Encoding Example (Binary to Unsigned – B2U)

\[x = 15213: \quad 00111011 \ 01101101 \]
\[y = -15213: \quad 11000100 \ 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]
\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]
Binary Weight Table

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1</td>
<td>2</td>
</tr>
<tr>
<td>2^2</td>
<td>4</td>
</tr>
<tr>
<td>2^3</td>
<td>8</td>
</tr>
<tr>
<td>2^4</td>
<td>16</td>
</tr>
<tr>
<td>2^5</td>
<td>32</td>
</tr>
<tr>
<td>2^6</td>
<td>64</td>
</tr>
<tr>
<td>2^7</td>
<td>128</td>
</tr>
<tr>
<td>2^8</td>
<td>256</td>
</tr>
<tr>
<td>2^9</td>
<td>512</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1024</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{11}</td>
<td>$2^{1+10} = 2^1 \times 1024 = 2K$</td>
</tr>
<tr>
<td>2^{12}</td>
<td>$2^{2+10} = 2^2 \times 1024 = 4K$</td>
</tr>
<tr>
<td>2^{13}</td>
<td>$2^{3+10} = 2^3 \times 1024 = 8K$</td>
</tr>
<tr>
<td>2^{14}</td>
<td>$2^{4+10} = 2^4 \times 1024 = 16K$</td>
</tr>
<tr>
<td>2^{15}</td>
<td>$2^{5+10} = 2^5 \times 1024 = 32K$</td>
</tr>
<tr>
<td>2^{16}</td>
<td>$2^{6+10} = 2^6 \times 1024 = 64K$</td>
</tr>
<tr>
<td>2^{17}</td>
<td>$2^{7+10} = 2^7 \times 1024 = 128K$</td>
</tr>
<tr>
<td>2^{18}</td>
<td>$2^{8+10} = 2^8 \times 1024 = 256K$</td>
</tr>
<tr>
<td>2^{19}</td>
<td>$2^{9+10} = 2^9 \times 1024 = 512K$</td>
</tr>
<tr>
<td>2^{20}</td>
<td>$2^{10+10} = 2^{10} \times 1024 = 1M$</td>
</tr>
</tbody>
</table>
Converting Unsigned to Binary (U2B)

Dividing the number repeatedly by 2 until the number becomes 0

\[
B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i
\]

Same algorithm to ANY number system

Example: Converting 49 to Binary

<table>
<thead>
<tr>
<th>Divide by</th>
<th>Number</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 49 ?

\[
1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 49
\]
Numeric Ranges

Unssigned Values
- **$UMin$** = 0

 000...0

- **$UMax$** = $2^w - 1$

 111...1

Two's Complement Values
- **$TMin$** = $-2^{w-1} = 100...0$

- **$TMax$** = $2^{w-1} - 1 = 011...1$

Other Values
- Minus 1 = $-2^{w-1} + 1 = 111...1$

Ranges for $w = 16$, i.e. 2 bytes (short)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$UMax$</td>
<td>65535</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$TMax$</td>
<td>32767</td>
<td>7F</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>$TMin$</td>
<td>-32768</td>
<td>80</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

\[
B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i
\]

\[
B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i
\]
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

Observations
- \(|TMin| = Tmax + 1\)
- **Asymmetric range**
- \(UMax = 2 \times Tmax + 1\)

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- **Values platform specific**
- Need to know -> to avoid **overflow**
Unsigned & Signed Integer Values

<table>
<thead>
<tr>
<th>X</th>
<th>$B2U(X)$</th>
<th>$B2T(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- **Equivalence**
 - Same encodings for nonnegative/ negative integer values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Representations in memory, pointers, strings
Mapping Between Signed & Unsigned

Signed (Two’s Complement)
\[x \rightarrow \text{T2B} \rightarrow \text{T2U} \rightarrow \text{B2U} \rightarrow \text{Ununsigned} \]

Maintain Same Bit Pattern

Unsigned
\[ux \rightarrow \text{U2B} \rightarrow \text{U2T} \rightarrow \text{B2T} \rightarrow x \]

Maintain Same Bit Pattern

- Mappings between unsigned and two’s complement numbers: keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

- **T2U** (Signed to Unsigned): Converts signed numbers to their unsigned counterparts.
- **U2T** (Unsigned to Signed): Converts unsigned numbers to their signed counterparts.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement

\[u_x = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \]

Large negative weight becomes Large positive weight

Maintain Same Bit Pattern
Conversion Visualized

- **Signed → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive
 - Warning: Can cause a lot of confusion and bugs in C !!!

![Diagram showing conversion visualization]

- **2’s Complement Range**
- ** Unsigned Range**
- **Unsigned Range**
- **Signed Range**
Announcement 1/27/2016

- This Thursday’s recitation sessions will cover both Data Lab assignment, and more C programming language features.
Review: Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix

 0U, 4294967259U

- Casting (i.e. conversion)
 - Explicit casting between signed & unsigned same as U2T and T2U

 int tx, ty;
 unsigned ux, uy;
 tx = (int) ux;
 uy = (unsigned) ty;

 - Implicit casting also occurs via assignments and procedure calls

 tx = ux;
 uy = ty;
Review: Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, **signed values implicitly cast to unsigned**
- Including comparison operations <, >, ==, <=, >=
- Examples for \(w = 32 \): \(T_{MIN} = -2,147,483,648 \), \(T_{MAX} = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Summary
Casting Signed \leftrightarrow Unsigned: Basic Rules

- Bit pattern is maintained (i.e. kept the same)
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing unsigned and signed int
 - \textit{int} is cast to \textit{unsigned}!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, divide with shift
- Summary

- Representations in memory, pointers, strings
Sign Extension

Task:
- Given \(w \)-bit signed integer \(x \)
- Convert it to \(w+k \)-bit integer **with same value**

Rule:
- Make \(k \) copies of sign bit:
- \(X' = x_{w-1},..., x_{w-1}, x_{w-1}, x_{w-2},..., x_0 \)

Diagram:
- The diagram illustrates the sign extension process, showing \(X \) being extended to \(X' \) by making \(k \) copies of the most significant bit (MSB) and \(w \) copies of the least significant bit (LSB).
Sign Extension Example

```c
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, Truncating: Basic Rules

- **Expanding** (e.g., short to int)
 - **Unsigned**: zeros added
 - **Signed**: sign extension
 - Both yield expected result

- **Truncating** (e.g., unsigned to unsigned short)
 - Unsigned/signed: high-ordered bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
- Representations in memory, pointers, strings
- Summary
Negation: Complement & Increment

- **Claim:** Following Holds for 2’s Complement
 \[\sim x + 1 = -x \]

- **A Shortcut to Calculate 2’s Complement**
 - **Observation:** \(\sim x + x = 1111...111 = -1 \)

\[
\begin{array}{c}
x \quad \begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\end{array} \\
+ \quad \begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \\
\hline \\
\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\end{array}
\]

\[
B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i
\]
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B</td>
<td>6D 00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4</td>
<td>92 11000100 10010010</td>
</tr>
<tr>
<td>$\sim x + 1$</td>
<td>-15213</td>
<td>C4</td>
<td>93 11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4</td>
<td>93 11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF</td>
<td>FF 11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0 + 1$</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Ranges for short (2 bytes)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF</td>
<td>FF 11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F</td>
<td>FF 01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80</td>
<td>00 10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF</td>
<td>FF 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

What about $-T_{min}$?

$T_{min} = - T_{max} - 1$
Unsigned Addition

Operands: w bits

\[
\begin{array}{c}
\hline
u \\
\hline
+ v \\
\hline
u + v \\
\hline
\end{array}
\]

True Sum: $w+1$ bits

Discard Carry: w bits

\[
\begin{array}{c}
\hline
UAdd_w(u, v) \\
\hline
\end{array}
\]

- **Standard Addition Function**
 - Ignores carry output (overflow is not signaled as errors in C language)

- **Implements Modular Arithmetic**

\[
s = UAdd_w(u, v) = (u + v) \mod 2^w
\]

\[
UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$

True Sum

2^{w+1}
2^w
0

Modular Sum

Overflow

$UAdd_4(u, v)$
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\quad u \\
+ \quad v \\
\hline
u + v
\end{array}
\]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\text{TAdd}_w(u, v)
\]

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:
    ```
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)
TAdd Overflow

Functionality
- True sum requires $w+1$ bits
- Drop off Most Significant Bit (MSB)
- Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0\ 111...1$</td>
<td>$011...1$</td>
</tr>
<tr>
<td>$0\ 100...0$</td>
<td>$000...0$</td>
</tr>
<tr>
<td>$0\ 000...0$</td>
<td>$000...0$</td>
</tr>
<tr>
<td>$1\ 011...1$</td>
<td>$100...0$</td>
</tr>
<tr>
<td>$1\ 000...0$</td>
<td>$100...0$</td>
</tr>
</tbody>
</table>

$2^{(w-1)}$
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - If sum $< -2^{w-1}$
 - Becomes positive
Characterizing TAdd

- **Functionality**
 - True sum requires $w+1$ bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

$$TAdd_w(u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^{w-1} & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}$$
Unsigned Multiplication in C

Operands: w bits

True Product: 2^w bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**

 $UMult_w(u, v) = u \cdot v \mod 2^w$
Signed Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same as unsigned multiplication
Multiplication

- **Computing Exact Product of** \(w \)-**bit numbers** \(x, y \)
 - Either *signed* or *unsigned*

- **Ranges**
 - **Unsigned**: Up to \(2w \) bits
 - Result range: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - **Two’s complement min (negative)**: Up to \(2w - 1 \) bits
 - Result range: \(x \times y \geq (-2^{w-1}) \times (2^w - 1) = -2^{2w-2} + 2^{w-1} \)
 - **Two’s complement max (positive)**: Up to \(2w \) bits, but only for \((TMin_w)^2 \)
 - Result range: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)

- **Maintaining Exact Results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Power-of-2 Multiply with Shift

Operation
- $u << k$ gives $u \times 2^k$
- Both signed and unsigned

Operands: w bits

True Product: $w+k$ bits

Discard k bits: w bits

Examples
- $u << 3 = u \times 8$
- $u << 5 - u << 3 = (u \times 32) - (u \times 8) = u \times 24$

Most machines shift and add faster than multiply
- Compiler generates this code automatically
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, divide with shift
- Summary

- Representations in memory, pointers, strings
Unsigned Power-of-2 Divide with Shift

- **Quotient of Unsigned by Power of 2**
 - $u >> k$ gives $\lfloor u / 2^k \rfloor$ (“floor” operations)
 - Uses logical right shift

Operands:

<table>
<thead>
<tr>
<th>u</th>
<th>l</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
<td>0</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Division:

<table>
<thead>
<tr>
<th>$u / 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lfloor u / 2^k \rfloor$</td>
</tr>
</tbody>
</table>

Result:

<table>
<thead>
<tr>
<th>$\lfloor u / 2^k \rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - $x \gg k$ gives $\lfloor x \div 2^k \rfloor$
 - Uses *arithmetic* right shift
 - Ok when $u \geq 0$, but rounds wrong direction when $u < 0$ *(should round toward 0)*

![Diagram showing quotient of signed by power of 2]

Operands:
- x
- 2^k

Division:
- $x / 2^k$

Result: $\text{RoundDown}(x / 2^k)$

<table>
<thead>
<tr>
<th>y</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>-7607</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- **Quotient of Negative Number by Power of 2**
 - Want $\left\lfloor \frac{x}{2^k} \right\rfloor$ (Round toward 0, i.e. use “ceiling” operation)
 - Compute as $\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor$
 - In C: $(x + (1<<k)-1) \gg k$
 - Biase dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>$\left\lfloor \frac{u}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$1 \ldots 0 \ldots 0$</td>
</tr>
<tr>
<td>$+2^k - 1$</td>
<td>$0 \ldots 01 \ldots 11$</td>
</tr>
<tr>
<td>$+2^k - 1$</td>
<td>$1 \ldots 1 \ldots 11$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>$\left\lfloor \frac{u}{2^k} \right\rfloor$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{l}{2^k}$</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
<tr>
<td>$\left\lfloor \frac{u}{2^k} \right\rfloor$</td>
<td>$1 \ldots 111 \ldots 11$</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend:

\[\frac{x}{2^k - 1} \]

Divisor:

\[\left\lfloor \frac{x}{2^k} \right\rfloor \]

Biasing adds 1 to final result
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Normal addition followed by *truncate*, same operation on bit level
 - **Unsigned**: addition mod 2^w
 - Mathematical addition & Possible subtraction of 2^w
 - **Signed**: modified addition mod 2^w (result in proper range)
 - Mathematical addition & Possible addition or subtraction of 2^w

- **Multiplication**: (product has $2w$ bits)
 - Normal multiplication followed by *truncate*, same operation on bit level
 - **Unsigned**: multiplication mod 2^w (result in proper range)
 - **Signed**: modified multiplication mod 2^w (result in proper range)
Arithmetic: Basic Rules

- **Left shift (Multiplication)**
 - Unsigned/signed: multiplication by 2^k
 - Always **logical left** shift

- **Right shift (Division)**
 - Unsigned: **logical right** shift, div (division + round toward zero) by 2^k
 - Signed: **arithmetic right** shift
 - Positive numbers: div (division + round toward zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Integer C Puzzle

- **Tmin** and **Tmax** make a good counter example in many cases.

1. \(x < 0 \) \(\Rightarrow \) \(((x*2) < 0) \)
 False: \(Tmin \)

2. \(ux >= 0 \)

3. \(x & 7 == 7 \) \(\Rightarrow \) \((x<<30) < 0 \)
 True: \(x_1 = 1 \)

4. \(ux > -1 \)

5. \(x > y \) \(\Rightarrow \) \(-x < -y \)
 False: \(-1, \ Tmin \)

6. \(x * x >= 0 \)

7. \(x > 0 && y > 0 \) \(\Rightarrow \) \(x + y > 0 \)
 False: \(Tmax, \ Tmax \)

8. \(x >= 0 \) \(\Rightarrow \) \(-x <= 0 \)
 True: \(-TMax < 0 \)

9. \(x <= 0 \) \(\Rightarrow \) \(-x >= 0 \)
 False: \(Tmin \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, divide with shift
 - Summary
- Data representation in memory, pointers, character strings
Byte-Oriented Memory Organization

- System provides a *private address space* to each “process”
 - Think of a process as a program being executed
 - A program can clobber its own data, but not that of others

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a *pointer* variable stores an address
Machine Words

- Any given machine has a “Word Size”
 - Nominal size of integer-valued data
 - Including addresses
 - Many current machines use 32 bits (4 bytes) words
 - Limits addresses to $2^{32} = 2^2 \times 2^{30} = 4 \times 10^9 = 4$ GB
 - Becoming too small for memory-intensive applications
 - Most high-end systems use 64 bits (8 bytes) words
 - Potential address space $\approx 18 \times 10^{18}$ bytes (exabytes)
 - Machines support multiple data formats (data types)
 - Fractions or multiples of word size
 - Always integral number of bytes

$10^6 \approx 2^{20} \approx 1$ mega-
$10^9 \approx 2^{30} \approx 1$ giga-
$10^{12} \approx 2^{40} \approx 1$ tera-
$10^{15} \approx 2^{50} \approx 1$ peta-
$10^{18} \approx 2^{60} \approx 1$ exa-
$10^{21} \approx 2^{70} \approx 1$ zetta-
$10^{24} \approx 2^{80} \approx 1$ yotta-
Word-Oriented Memory Organization

- Addresses specify byte locations
 - Address of first byte in a word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
- Need to distinguish the notion of address vs. data stored in that address

<table>
<thead>
<tr>
<th></th>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td></td>
<td></td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0012</td>
<td></td>
</tr>
</tbody>
</table>

- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?

- Conventions
 - **Big Endian**: Sun, PPC Mac, Internet
 - Most significant byte first
 - Least significant byte has **highest** address, i.e.
 - **Little Endian**: x86, ARM processors running Android, iOS and Windows
 - Least significant byte first
 - Least significant byte has **lowest** address, i.e.
Announcement 2/1/2016

- Homework Assignment #1 has been issued today
 - Download from Moodle class web page
 - Due date before class Wednesday 2/10/2016 (check class schedule)
- Data Lab due next Monday 2/8/2016
 - Should start asap, if not yet
 - Check Data Lab Forum for common Q&As, or post your problem there.
Review: Byte Ordering Example

- **Big Endian**
 - Most significant byte first
 - i.e. Least significant byte has highest address

- **Little Endian**
 - Least significant byte first
 - i.e. Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation 0x76543210
 - Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76</td>
<td>54</td>
<td>32</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>32</td>
<td>54</td>
<td>76</td>
</tr>
</tbody>
</table>
Representing Integers

int A = 15213;

long int C = 15213;

int B = -15213;
Examining Data Representations

- **Code to Print Byte Representation of Data**
 - Casting pointer to “unsigned char *” allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: print pointer (i.e. address)
- `%x`: print Hexadecimal
- `\t`: tab
- `\n`: new line
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```c
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```
Representing Pointers

```cpp
int B = -15213;
int *P = &B;
```

- Different compilers & machines assign different locations to objects
- Even get different results each time run program
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be **null-terminated**
 - Final character = 0 # invisible

- **Compatibility**
 - Byte ordering not an issue

- **ASCII**: American Standard Code for Information Interchange
- **Unicode Consortium**
Move on to Floating Point Numbers