Data Representation: Floating Point Numbers

Csci 2021 - Machine Architecture and Organization
Professor Pen-Chung Yew

With sides from Randy Bryant and Dave O'Hallaron

Floating Point Numbers

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101₂?

Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{i=-\infty}^{\infty} b_i \times 2^i \)

Fractional Binary Numbers: Examples

- Value | Representation
 - 5 3/4 | 101.11₂
 - 2 7/8 | 10.111₂
 - 1 7/16 | 1.0111₂

- Observations
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.11111₁₂ are just below 1.0
 - \(1/2 + 1/4 + 1/8 + ... + 1/2^n + ... \rightarrow 1.0 \)
 - Use notation 1.0 – \(\varepsilon \)

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form \(x/2^w \)
 - Other rational numbers may have repeating bit representations
 - Value | Representation
 - 1/3 | 0.0101010101[01]…₂
 - 1/5 | 0.001100110011[0011]…₂
 - 1/10 | 0.0001101100110011[0011]…₂

- Limitation #2
 - Just one setting of binary point within the \(w \) bits
 - Limited range of numbers (very small values? very large?)
Floating Point Numbers

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPU vendors
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Announcement 2/3/2016

- Prof. Yew’s office hour on Friday 2/5/206 has been extended by ½ hour, i.e. from 10am-11:30am
- Data Lab due 11:55pm, next Monday 2/8/2016
 - Check Data Lab Forum for common Q&As, or post your problems there.
- Homework Assignment #1 has been issued on Monday 2/1/2016
 - Download from Moodle class webpage
 - Due date before class Wednesday 2/10/2016

Review: Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form \(\frac{x}{2^k} \)
 - Other rational numbers may have repeating bit representations
 - Value | Representation
 - 1/3 | 0.0101010101[01]…
 - 1/5 | 0.001100110011[0011]…
 - 1/10 | 0.0001100110011[0011]…
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: \((-1)^s M \times 2^e\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significant \(M\) normally a fractional value in range \((1,0,2,0)\).
 - Exponent \(E\) weights value by power of two
- Encoding
 - Most significant bit (MSB) is sign bit \(s\)
 - exp field encodes \(E\) (but is not equal to \(E\))
 - frac field encodes \(M\) (but is not equal to \(M\))
 - Three different encoding schemes: (1) Normalized (exp ≠ 000…000, exp ≠ 111…111), (2) Denormalized (exp=000…000), (3) Not-a-Number (NaN) (exp = 1111…111)

Precision options

- Single precision: 32 bits
 - exp frac 23-bits
 - 1 8-bits
- Double precision: 64 bits
 - exp frac 52-bits
 - 1 11-bits
- Extended precision: 80 bits (Intel only, internal to hardware)
 - exp frac 63 or 64-bits
 - 1 15-bits
(1) “Normalized” Values

- When: \(\exp \neq 000...0 \) and \(\exp \neq 111...1 \)

- Exponent coded as a biased value: \(\text{Exp} = \exp + \text{Bias} \)
 - \(\exp \): unsigned value of \(\exp \) field
 - \(\text{Bias} = 2^{k-1} - 1 \), where \(k \) is the number of exponent bits
 - Single precision: \(127 \) (Exp: \(1…254 \), E: \(-126…127\))
 - Double precision: \(1023 \) (Exp: \(1…2046 \), E: \(-1022…1023\))

- Significand coded with implied leading 1: \(\text{M} = 1.xxx…x \)
 - \(xxx…x \): bits of \(\text{frac} \) field
 - Minimum when \(\text{frac} = 000…0 \) (M = 1.0)
 - Maximum when \(\text{frac} = 111…1 \) (M = 2.0 − ε)

(2) Denormalized Values

- Condition: \(\exp = 000...0 \)

- Exponent value: \(E = 1 – \text{Bias} \) (instead of \(E = 0 – \text{Bias} \))

- Significand coded with implied leading 0: \(M = 0.xxx…x \)
 - \(xxx.x\): bits of \(\text{frac} \)
 - Allows gradual underflow

- Cases
 - \(\exp = 000..0, \text{frac} = 000..0 \)
 - Represents zero value
 - Note distinct values: +0 and −0 (why?)
 - \(\exp = 000.0, \text{frac} = 000.0 \)
 - Numbers closest to 0.0
 - Equi-spaced

(3) Special Values

- Condition: \(\exp = 111..1 \)

- Case: \(\exp = 111..1, \text{frac} = 000..0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., 1.0/0.0 = −\(\infty \)/−\(\infty \) = \(\infty \)/\(\infty \) = \(\infty \)

- Case: \(\exp = 111..1, \text{frac} \neq 000..0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1} = \infty = +0 \)

Visualization: Floating Point Encodings

Floating Point Numbers

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
 - Rounding, addition, multiplication
 - Floating point in C
- Summary
Tiny Floating Point Example

8-bit Floating Point Representation
- Sign bit is in the most significant bit
- Next four bits are the exponent, with a bias of 7
- Last three bits are the \(\text{frac} \)

Same general form as IEEE Format
- Normalized, denormalized
- Representation of 0, NaN, infinity

Dynamic Range (Positive Only)

e	exp	frac	Value
0 0000 000	-6	0	closest to zero
0 0000 001	-6	1/8*1/64 = 1/512	0.001953125
0 0000 110	-6	6/8*1/64 = 6/512	0.09765625
0 0000 111	-6	7/8*1/64 = 7/512	0.125

Dynamic Range (Positive Only)

e	exp	frac	Value
0 0001 000	-6	8/8*1/64 = 8/512	closest to 1 below
0 0001 001	-6	9/8*1/64 = 9/512	0.1875

Dynamic Range (Positive Only)

e	exp	frac	Value
0 0110 110	-1	16/8*1/2 = 16/16	closest to 1 above
0 0110 111	-1	15/8*1/2 = 15/16	1

Dynamic Range (Positive Only)

e	exp	frac	Value
0 1110 110	7	14/8*128 = 224	largest norm
0 1110 111	7	15/8*128 = 240	2

Dynamic Range (Positive Only)

e	exp	frac	Value
0 1111 000	n/a	inf	infinity

Distribution of Values

- 6-bit IEEE-like format
 - \(e = 3 \) exponent bits
 - \(f = 2 \) fraction bits
 - Bias is \(2^{3-1} = 3 \)

- Notice how the distribution gets denser toward zero.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denormal vs. normalized
 - Normalized vs. infinity
 - Negative is smaller than positive (not so in 2’s complement)

Floating Point Numbers

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- \(x + y = \text{Round}(x + y) \)
- \(x \times y = \text{Round}(x \times y) \)

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into \(\text{frac} \)

Closer Look at Round-To-Even

- Default Rounding Mode – Round to Even
 - Need to use assembly programming to get other rounding modes
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - \(7.8949999 \) \(\approx \) 7.89 (Less than half way)
 - \(7.8950001 \) \(\approx \) 7.90 (Greater than half way)
 - \(7.8950000 \) \(\approx \) 7.90 (Half way—round up)
 - \(7.8850000 \) \(\approx \) 7.88 (Half way—round down)

Rounding

- Rounding Modes (Illustrate with 5 rounding)
 - Towards zero
 - Round down (\(-\))
 - Round up (\(+\))
 - Nearest Even (default)

Value	Binary	Rounded	Action	Rounded Value
1.4	1.00	1		1
1.6	1.00	1		1
1.5	1.00	1		1
2.5	1.01	1		2
-1.5	1.01	1		1

- Fixing
 - Exponent: \(E_1 \) (the larger of \(E_x \) and \(E_y \))
 - Sign: \(+_{E_1} \) if \(s_{E_1} \) \(= \) \(+\)
 - Sign of signed align & add
 - Round M to fit \(\text{frac} \) precision

Floating Point Addition

\[(-1)^{s_{E_1}} M_1 \times 2^{E_1} + (-1)^{s_{E_2}} M_2 \times 2^{E_2} \]

- Exact Result: \((-1)^{s_{E_1}} M_1 \times 2^{E_1} \)
 - \(E_1 > E_2 \)
 - \(E_1 = E_2 \)
 - \(E_1 < E_2 \)

- Fixing
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - If \(E \) out of range, overflow
 - Round \(M \) to fit \(\text{frac} \) precision

FP Multiplication

\[(-1)^{s_1} M_1 \times 2^{E_1} \times (-1)^{s_2} M_2 \times 2^{E_2} \]

- Exact Result: \((-1)^{s_1} M_1 \times 2^{E_1} \)
 - Assume \(E_1 > E_2 \)

- Exponent \(E_{\text{result}} \)
 - Result of signed align & add

- Fixing
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit \(\text{frac} \) precision
Review: Floating Point Encodings

- Normalized: $\pm 1 \times \text{fraction} \times 2^{\text{exponent}}$
- Denormalized: $0 \times \text{fraction} \times 2^{\text{exponent} - \text{bias}}$
- Inf: $\pm \infty$
- NaN: Not a Number

Review: Distribution of Values

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

 Notice how the distribution gets denser toward zero.

 8 values

Review: Positive Only

- $s \times 2^E$ = Value
- $s = 0$ or 1
- $E = \text{Exp} - \text{Bias}$
- E is in the range -6 to 6

Review: A Close-up View

6-bit IEEE-like format
- $e = 3$ exponent bits
- $f = 2$ fraction bits
- Bias is 3

Review: Floating Point Addition

- $(-1)^{s_1} M_1 \times 2^{E_1} + (-1)^{s_2} M_2 \times 2^{E_2}$
- Assume $E_1 > E_2$

 Exact Result: $(-1)^s M \times 2^E$
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E_1 (the larger of E_1 and E_2)

 Fixing
 - If $M > 2$, shift M right, increment E
 - If $M < 1$, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Review: Posi+ve Only

- Get binary points lined up
- Assume $E_1 > E_2$
Mathematical Properties of FP Add

- Mathematical Properties
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 \((3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14\)
 - 0 is additive identity? Yes
 - Every element has additive inverse? Yes, except for infinities & NaNs

- Monotonicity
 - \(a \leq b \Rightarrow a + c \leq b + c\)
 - Except for infinities & NaNs

Floating Point Numbers

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form \(M \times 2^e\)
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Mathematical Properties of FP Mult

- Mathematical Properties
 - Multiplication Commutative? Yes
 - Multiplication is Associative? No
 - Possibility of overflow, inexactness of rounding
 - Ex: \((1e20 \times 1e20) \times 1e-20 = 1, 1e20 \times (1e20 \times 1e-20) = 1e20\)
 - 1 is multiplicative identity? Yes
 - Multiplication distributes over addition? No
 - Possibility of overflow, inexactness of rounding
 - \(1e20 \times (1e20 - 1e20) = 0.5, 1e20 \times 1e20 - 1e20 \times 1e20 = NaN\)

- Monotonicity
 - \(a \leq b \& c \geq 0 \Rightarrow a \times c \leq b \times c\)
 - Except for infinities & NaNs

Floating Point in C

- C Guarantees Two Levels
 - `float` single precision
 - `double` double precision

- Conversions/Casting
 - Type casting between int, float, and double changes bit representation
 - `double/float` → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - `int` → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int` → float
 - Will round according to rounding mode

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...00</td>
<td>(2^{-126} \times 2^{-53} = 1.18 \times 10^{-38})</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...00</td>
<td>(2^{-126} \times 2^{-53} = 1.18 \times 10^{-38})</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>01...11</td>
<td>11...11</td>
<td>(1.0 - \varepsilon \times 2^{-126} = 2^{-32})</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...11</td>
<td>11...11</td>
<td>(1.0 \times 2^{-32} = 2^{-32})</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...11</td>
<td>11...11</td>
<td>(2.0 - \varepsilon \times 2^{32} = 2^{32})</td>
</tr>
<tr>
<td>Single</td>
<td>1.0 \times 10^20</td>
<td>1.0 \times 10^20</td>
<td>(2^{32} = 2^{32})</td>
</tr>
<tr>
<td>Double</td>
<td>1.8 \times 10^{38}</td>
<td>1.8 \times 10^{38}</td>
<td>(2^{32} = 2^{32})</td>
</tr>
</tbody>
</table>
Machine-Level Data Representation (Done) to Machine-Level Program Representation (Next)