Assignment #10: Orthogonal Sets, Orthogonal Projections, Gram-Schmidt, and Least Squares

Due date: Wednesday, April 20, 2016 (10:10am)

Name: __
Assignment #10: Orthogonal Sets, Orthogonal Projections, Gram-Schmidt, and Least Squares

Due date: Wednesday, April 20, 2016 (10:10am)

For full credit you must show all of your work.

1. For each of the following, choose the correct option:
 a. True or False: every matrix that has orthogonal columns is an orthogonal matrix
 b. True or False: every linearly independent set of vectors in \mathbb{R}^n is an orthogonal set
 c. True or False: if two vectors v_1 and v_2 are orthogonal, then they are also linearly independent
 d. True or False: if two vectors v_1 and v_2 are orthogonal, and neither v_1 nor v_2 equals zero, then v_1 and v_2 are linearly independent
 e. True or False: if A is an orthogonal matrix, then A is invertible
 f. True or False: if A is an orthogonal matrix, then $AA^T = I$
 g. True or False: if A is a matrix that has orthogonal columns, then $A^T A = I$
 h. True or False: if A and B are each orthogonal matrices, then their product AB is also an orthogonal matrix

2. What is the orthogonal projection of $x = \begin{bmatrix} -6 \\ 1 \\ 18 \end{bmatrix}$ onto $u = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$?

3. Express $x = \begin{bmatrix} -6 \\ 1 \\ 18 \end{bmatrix}$ as the sum of a vector \hat{x} that is contained within the subspace W of \mathbb{R}^3 spanned by $u = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$ and a vector y that is contained within the subspace W^\perp. Verify that $\hat{x} \cdot y = 0$.

4. If $v_1 = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3 \\ 3 \\ -3 \\ 1 \end{bmatrix}$ and $v_4 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ -3 \end{bmatrix}$ form an orthogonal basis for \mathbb{R}^4,
 a. Find the orthogonal projection of $x = \begin{bmatrix} -8 \\ 8 \\ 6 \\ 6 \end{bmatrix}$ onto each of the 1D subspaces of \mathbb{R}^4 spanned by each of the basis vectors v_i.

b. Find the closest point \(\hat{x} \) to \(x \) in the subspace \(W \) of \(\mathbb{R}^4 \) spanned by \(\{v_1, v_2\} \)

c. Express \(x \) as the sum of two orthogonal vectors, \(u \) which is in the subspace \(W \) spanned by \(\{v_1, v_2\} \) and \(w \) which is in \(W^\perp \)

d. Express \(x = \begin{bmatrix} -8 \\ 8 \\ 6 \\ 6 \end{bmatrix} \) as a linear combination of \(\{v_1, v_2, v_3, v_4\} \).

5. Let \(u_1 = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix} \) and \(u_2 = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix} \), and let \(U = [u_1 \ u_2] \).

a. Compute \(A = U^T U \) and \(B = U U^T \).

b. Compute \(w = (U U^T) y \) where \(y = \begin{bmatrix} -1 \\ 7 \\ 7 \end{bmatrix} \).

c. Is it possible to express \(w \) as a linear combination of \(u_1 \) and \(u_2 \)? Is it possible to express \(y \) as a linear combination of \(u_1 \) and \(u_2 \)? How do you know?

d. Express \(y \) as the sum of two orthogonal vectors, one of which is in the subspace spanned by \(u_1 \) and \(u_2 \).

6. Use the Gram-Schmidt Process to find an orthogonal basis for the subspace of \(\mathbb{R}^4 \) spanned by

\[
\begin{align*}
\mathbf{u}_1 &= \begin{bmatrix} -1 \\ 3 \\ 1 \\ 1 \end{bmatrix}, \\
\mathbf{u}_2 &= \begin{bmatrix} 2 \\ 4 \\ 2 \\ 0 \end{bmatrix}, \\
\mathbf{u}_3 &= \begin{bmatrix} -10 \\ 4 \\ -4 \\ 6 \end{bmatrix}
\end{align*}
\]

7. What complications can arise when you try to use the Gram-Schmidt process to find an orthogonal basis for the column space of an \(m \times n \) matrix whose columns are linearly dependent? Try it on the following matrices:

\[
\begin{align*}
\mathbf{A} &= \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}, \\
\mathbf{B} &= \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \\
\mathbf{C} &= \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]

What do you conclude about the applicability of the Gram-Schmidt process for finding an orthogonal basis for the column space of an arbitrary matrix?

8. Using Matlab, write a function \(\text{GramSchmidt()} \) that takes as input an arbitrary \(m \times n \) matrix \(\mathbf{M} \) and produces as output an \(m \times p \) matrix \(\mathbf{B} \) whose columns form an orthogonal basis for the subspace of \(\mathbb{R}^m \) spanned by the columns of \(\mathbf{M} \). Your program should not attempt to normalize the columns of \(\mathbf{B} \). Test your program on the input from questions 7 and 8 above and verify that your program produces the expected results. Please pass in a printout of your code and its output.
9. Working by hand, find the QR decomposition of \(A = \begin{bmatrix} 1 & 0.5 \\ 2 & 2 \\ -2 & 0 \end{bmatrix} \), where \(Q \) is a 3 x 2 matrix whose columns form an orthonormal basis for the column space of \(A \) and \(R \) is a 2 x 2 matrix such that \(A = QR \) (in other words, \(R = Q^T A \)).

10. Working by hand, find the QR decomposition of \(A = \begin{bmatrix} 1 & 0.5 \\ 2 & 2 \\ -2 & 0 \end{bmatrix} \), where \(Q \) is a 3 x 3 matrix whose columns form an orthonormal basis for \(\mathbb{R}^3 \) and \(R \) is a 3 x 2 matrix such that \(A = QR \) (in other words, \(R = Q^T A \)).

11. Use Householder reflections to derive the QR decomposition of \(A = \begin{bmatrix} 1 & 0.5 \\ 2 & 2 \\ -2 & 0 \end{bmatrix} \).

12. Find the least-squares fit of the following 4 points to a line: (0, 5), (1, 4) (–1, 0), (–2, –1). What is the least squares error in this approximation?

13. Which of the systems listed below has a unique least squares solution? Explain how you can tell without calculating the least squares solution.

\[
\begin{align*}
\begin{bmatrix}
1 & -1 & 1 \\
2 & -2 & 3 \\
2 & -2 & 3 \\
1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
\uparrow \\
x \\
\downarrow
\end{bmatrix}
&=
\begin{bmatrix}
2 \\
1 \\
1 \\
2
\end{bmatrix} \\
\begin{bmatrix}
1 & 2 & 2 & 1 \\
1 & 3 & 3 & 1 \\
2 & 3 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
\uparrow \\
x \\
\downarrow
\end{bmatrix}
&=
\begin{bmatrix}
1 \\
2 \\
1 \\
0
\end{bmatrix} \\
\begin{bmatrix}
1 & 1 & 2 \\
0 & -2 & 1 \\
0 & 1 & 3 \\
0 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
\uparrow \\
x \\
\downarrow
\end{bmatrix}
&=
\begin{bmatrix}
0 \\
1 \\
2 \\
3
\end{bmatrix}
\end{align*}
\]