VECTORS [PARTS OF 1.3]
Vectors and the set \mathbb{R}^n

- A vector of dimension n is an ordered list of n numbers

Example:

$$v = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} ; \quad w = \begin{bmatrix} 0 \\ 1 \end{bmatrix} ; \quad z = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 4 \end{bmatrix}.$$

- v is in \mathbb{R}^3, w is in \mathbb{R}^2 and z is in \mathbb{R}^4?

- In \mathbb{R}^3 the \mathbb{R} stands for the set of real numbers that appear as entries in the vector, and the exponents 3, indicate that each vector contains 3 entries.

- A vector can be viewed just as a matrix of dimension $m \times 1$.
\(\mathbb{R}^n \) is the set of all vectors of dimension \(n \). We will see later that this is a vector space, i.e., a set that has some special properties with respect to operations on vectors.

Two vectors in \(\mathbb{R}^n \) are equal when their corresponding entries are all equal.

Given two vectors \(u \) and \(v \) in \(\mathbb{R}^n \), their sum is the vector \(u + v \) obtained by adding corresponding entries of \(u \) and \(v \).

Given a vector \(u \) and a real number \(\alpha \), the scalar multiple of \(u \) by \(\alpha \) is the vector \(\alpha u \) obtained by multiplying each entry in \(u \) by \(\alpha \).

(!) Note: the two vectors must be both in \(\mathbb{R}^n \), i.e., then both have \(n \) components.

Let us look at this in detail.
Sum of two vectors

\[x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} ; \quad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} ; \quad \rightarrow \quad x + y = \begin{bmatrix} x_1 + y_1 \\ y_2 + x_2 \\ x_3 + y_3 \end{bmatrix} \]

with numbers:

\[x = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} ; \quad y = \begin{bmatrix} 0 \\ 3 \\ -3 \end{bmatrix} ; \quad \rightarrow \quad x + y = \begin{bmatrix} -1 \\ 5 \\ ?? \end{bmatrix} \]
Multiplication by a scalar

Given: a number α (a 'scalar') and a vector x:

$$\alpha \in \mathbb{R}, \quad x \in \mathbb{R}^3, \quad \rightarrow \quad \alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{bmatrix}$$

with numbers:

$$\alpha = 4; \quad x = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} \quad \rightarrow \quad \alpha x = \begin{bmatrix} -4 \\ 8 \\ 12 \end{bmatrix}$$

In the text vectors are represented by bold characters and scalars by light characters. We will often use Greek letters for scalars and regular latin symbols for vectors.
Properties of $+$ and α*

- The vector whose entries are all zero is called the zero vector and is denoted by 0.

 - (a) $x + y = y + x$ (Addition is commutative)
 - (b) $x + (y + z) = (x + y) + z$ (Addition is associative)
 - (c) $0 + x = x + 0 = x$, (0 is the vector of all zeros)
 - (d) $x + (−x) = −x + x = 0$ ($−x$ is the vector $(−1)x$)
 - (e) $\alpha(x + y) = \alpha x + \alpha y$
 - (f) $(\alpha + \beta)x = \alpha x + \beta x$
 - (g) $(\alpha \beta)x = \alpha(\beta x)$
 - (h) $1x = x$ for any x
A linear combination of m vectors is a vector of the form:

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_m x_m$$

where $\alpha_1, \alpha_2, \cdots, \alpha_m$, are scalars and x_1, x_2, \cdots, x_m, are vectors in \mathbb{R}^n.

The scalars $\alpha_1, \alpha_2, \cdots, \alpha_m$ are called the weights of the linear combination.

They can be any real numbers, including zero.
Example: Linear combinations of vectors in \mathbb{R}^3:

$$u = 2 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}; \quad w = 2 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

And we have:

$$u = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}; \quad w = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix}$$

Note: for w the second weight is -1 and the third is $+1$.
The linear span of a set of vectors

Definition: If \(v_1, \cdots, v_p \) are in \(\mathbb{R}^n \), then the set of all linear combinations of \(v_1, \cdots, v_p \) is denoted by \(\text{span}\{v_1, \cdots, v_p\} \) and is called the subset of \(\mathbb{R}^n \) spanned (or generated) by \(v_1, \cdots, v_p \). That is, \(\text{span}\{v_1, \cdots, v_p\} \) is the collection of all vectors that can be written in the form \(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_p v_p \) with \(\alpha_1, \alpha_2, \cdots, \alpha_p \) scalars.

What is \(\text{span}\{u\} \) in \(\mathbb{R}^2 \) where \(u = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \)?

What is \(\text{span}\{v\} \) in \(\mathbb{R}^2 \) where \(v = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)?

What is \(\text{span}\{u, v\} \) in \(\mathbb{R}^2 \) with \(u, v \) given above?
Does the vector \([-1, 1] \) belong to this \(\text{span}\{u, v\} \)?

Same question for the vector \([1, 1] \)

What is \(\text{span}\{u, v\} \) in \(\mathbb{R}^3 \) when:

\[
\begin{align*}
u &= \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}; \\
v &= \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}
\end{align*}
\]

Do the vectors:

\[
\begin{align*}
a &= \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}; \\
b &= \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}
\end{align*}
\]

belong to \(\text{span}\{u, v\} \) found in the previous question?

Is \(\text{span}\{u, v\} \) the same as \(\text{span}\{v, u\} \)?

Is \(\text{span}\{u, v\} \) the same as \(\text{span}\{2u, -3v\} \)?
Geometric representation of \mathbb{R}^2 and \mathbb{R}^3

Consider a rectangular coordinate system in the plane. The illustration shows the vector

$$\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$$

with $a = 4, b = 2$.

Each point in the plane is determined by an ordered pair of numbers, so we identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$.

We may regard \mathbb{R}^2 as the set of all points in the plane.
\mathbb{R}^2

x_1 in the horizontal direction, x_2 in vertical direction
Often we draw an oriented line from origin to the point:

\[(2,1) \]

\[(-1,-1) \]
horizontal = x_2, vertical = x_3, back to front direction = x_1 (However some representations may differ). We will use this one.
Geometric interpretation of addition of 2 vectors

First viewpoint:

Think of moving (“rigidly”) one of the vectors so its origin is at endpoint of the other vector. Then $x + y$ is the vector from origin to the end point of the shifted vector.
Second viewpoint:

$x + y$ corresponds to the fourth vertex of the parallelogram whose other three vertices are: O, x, and y.

Using the first viewpoint, show geometrically how to add the 3 vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$.

Text: 1.3 – Vectors
Geometric interpretation of \(\text{span}\{v\} \)

- Let \(v \) be a nonzero vector in \(\mathbb{R}^3 \)

- Then \(\text{span}\{v\} \) is the set of all scalar multiples of \(v \)

- This is also the set of points on the line in \(\mathbb{R}^3 \) through \(v \) and \(0 \).

(Figure 1.0 from text).
Geometric interpretation of \(\text{span}\{u, v\} \)

- Let \(u, v \) be two nonzero vectors in \(\mathbb{R}^3 \) with \(v \) not a multiple of \(u \).

- Then \(\text{span}\{u, v\} \) is the plane in \(\mathbb{R}^3 \) that contains \(u, v, \) and \(0 \).

- In particular, \(\text{span}\{u, v\} \) contains the two lines \(\text{span}\{u\} \) and \(\text{span}\{v\} \).

(See also Figure 1.1 from text).
LINEAR INDEPENDENCE [1.7]
Linear independence

Definition

- The set \(\{v_1, ..., v_p\} \) is said to be linearly dependent if there exist weights \(c_1, ..., c_p \), not all zero, such that

\[
c_1v_1 + c_2v_2 + ... + c_pv_p = 0
\]

- It is linearly independent otherwise.
- The above equation is called linear dependence relation among the vectors \(v_1, ..., v_p \).

- Another way to express dependence: A set of vectors is linearly dependent if and only if there is one vector among them which is a linear combination of all the others.

≦ Prove this
Q: Why do we care about linear independence?

A: When expressing a vector \(\mathbf{x} \) as a linear combination of a system \(\{\mathbf{v}_1, \cdots, \mathbf{v}_p\} \) that is linearly dependent, then we can find a smaller system in which we can express \(\mathbf{x} \).

A dependent system is ‘redundant’

Let \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \). Is \(\{\mathbf{v}_1\} \) linearly independent? [special case where \(p = 1 \)]

A system consisting of a nonzero vector [at least one nonzero entry] is always linearly independent: True - False?

Are the following systems linearly independent:

\(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \), \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -10 \\ 0 \end{bmatrix} \right\} \), \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\} \)?
Let $v_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$; $v_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$; $v_3 = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$;

(a) Determine if $\{v_1, v_2, v_3\}$ is linearly independent

(b) If possible find a linear dependence relation among v_1, v_2, v_3.

Solution: We must determine if the system:

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

has a nontrivial solution

Note Solution is trivial when $x_1 = x_2 = x_3 = 0$
Augmented syst: | Echelon 1st step | Echelon 2nd step
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 -2 0</td>
<td>1 4 -2 0</td>
<td>1 4 -2 0</td>
</tr>
<tr>
<td>1 1 3 0</td>
<td>0 -3 5 0</td>
<td>0 -3 5 0</td>
</tr>
<tr>
<td>2 5 1 0</td>
<td>0 -3 5 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

- This system is equivalent to original one.
- Select $x_3 = 3$ (to avoid fractions) and back-solve for x_2 ($x_2 = 5$), and x_1, ($x_1 = -14$)
- Conclusion: there is a nontrivial solution
- NOT independent

(b) Linear dependence relation: From above,

$$-14v_1 + 5v_2 + v_3 = 0$$
Note: Text uses the reduced echelon form instead of back-solving
[Result is clearly the same. Both solutions are OK]

- With the reduced row echelon form

\[
\begin{bmatrix}
1 & 0 & 14/3 & 0 \\
0 & 1 & -5/3 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- \(x_1 = -(14/3)x_3; \quad x_2 = (5/3)x_3\)

- select \(x_3 = 3\) then \(x_2 = 5, x_1 = 14\)

- Recall: \(x_1, x_2\) are basic variables, and \(x_3\) is free