THE GRAM-SCHMIDT ALGORITHM AND QR [6.4]
1. Two vectors \(u \) and \(v \) are orthogonal if \(u \cdot v = 0 \).

2. They are orthonormal if in addition \(||u|| = ||v|| = 1 \).

3. In this case the matrix \(Q = [u, v] \) is such that

\[
Q^T Q = I
\]

- We say that the system \(\{u, v\} \) is orthonormal..
- .. and that the matrix \(Q \) has orthonormal columns.
- .. or that it is orthogonal [Text reserves this term to \(n \times n \) case]
Example: An orthonormal system \(\{u, v\} \)

\[
\begin{align*}
u &= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \quad v &= \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}
\end{align*}
\]

Generalization:

A system of vectors \(\{v_1, \ldots, v_n\} \) is orthogonal if \(v_i \cdot v_j = 0 \) for \(i \neq j \); and orthonormal if in addition \(\|v_i\| = 1 \) for \(i = 1, \ldots, n \).
A matrix is orthogonal if its columns are orthonormal.

Then: $V = [v_1, \ldots, v_n]$ has orthonormal columns.

[Note: The term 'orthonormal matrix' is not used. ‘orthogonal’ is often used for square matrices only (textbook)].
The Gram-Schmidt algorithm

Problem: Given a set \(\{u_1, u_2\} \) how can we generate another set \(\{q_1, q_2\} \) from linear combinations of \(u_1, u_2 \) so that \(\{q_1, q_2\} \) is orthonormal?

Step 1 Define first vector: \(q_1 = u_1 / \|u_1\| \) (‘Normalization’)

Step 2: Orthogonalize \(u_2 \) against \(q_1 \): \(\hat{q} = u_2 - (u_2 \cdot q_1) q_1 \)

Step 3 Normalize to get second vector: \(q_2 = \hat{q} / \|\hat{q}\| \)

Result: \(\{q_1, q_2\} \) is an orthonormal set of vectors which spans the same space as \(\{u_1, u_2\} \).
The operations in step 2 can be written as

\[\hat{q} := ORTH(u_2, q_1) \]

ORTH \((u_2, q_1)\): “orthogonalize \(u_2\) against \(q_1\)”

\(ORTH(x, q)\) denotes the operation of orthogonalizing a vector \(x\) against a unit vector \(q\).

Result of \(z = ORTH(x, q)\)
Example:

\[u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix} \]

Step 1:

\[q_1 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \]

Step 2: First compute \(u_2 \cdot q_1 = \ldots = 2 \). Then:

\[\hat{q} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix} - 2 \times \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix} \]

Step 3: Normalize \(q_2 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \)
Generalization: 3 vectors

- How to generalize to 3 or more vectors?
- For 3 vectors: \([u_1, u_2, u_3]\)
 - First 2 steps are the same → \(q_1, q_2\)
 - Then orthogonalize \(u_3\) against \(q_1\) and \(q_2\):
 \[
 \hat{q} = u_3 - (u_3 \cdot q_1)q_1 - (u_3 \cdot q_2)q_2
 \]
 - Finally, normalize:
 \[
 q_3 = \frac{\hat{q}}{\|\hat{q}\|}
 \]

General problem: Given \(U = [u_1, \ldots, u_n]\), compute \(Q = [q_1, \ldots, q_n]\) which is orthonormal and s.t. \(\text{Col}(Q) = \text{Col}(U)\).
ALGORITHM : 1. Classical Gram-Schmidt

1. For $j = 1 : n$ Do:
2. $\hat{q} = u_j$
3. For $i = 1 : j - 1$
4. $\hat{q} := \hat{q} - (u_j \cdot q_i)q_i$ / set $r_{ij} = (u_j \cdot q_i)$
5. End
6. $q_j := \hat{q}/\|\hat{q}\|$ / set $r_{jj} = \|\hat{q}\|$
7. End

All n steps can be completed iff u_1, u_2, \ldots, u_n are linearly independent.

Define a matrix R as follows

$$r_{ij} = \begin{cases}
 u_j \cdot q_i & \text{if } i < j \text{ (see line 4)} \\
 \|\hat{q}\| & \text{if } i = j \text{ (see line 6)} \\
 0 & \text{if } i > j \text{ (lower part)}
\end{cases}$$
We have from the algorithm: (For $j = 1, 2, \ldots, n$)

$$u_j = r_{1j}q_1 + r_{2j}q_2 + \ldots + r_{jj}q_j$$

If $U = [u_1, u_2, \ldots, u_n]$, $Q = [q_1, q_2, \ldots, q_n]$, and if R is the $n \times n$ upper triangular matrix defined above:

$$R = \{r_{ij}\}_{i,j=1,\ldots,n}$$

then the above relation can be written as

$$U = QR$$

This is called the QR factorization of U.

Text: 6.4 – QR
Q has orthonormal columns. It satisfies:
\[Q^T Q = I \]

It is said to be orthogonal

R is upper triangular

What is the inverse of an orthogonal \(n \times n \) matrix?

What is the cost of the factorization when \(U \in \mathbb{R}^{m \times n} \)?
Another decomposition:

A matrix U, with linearly independent columns, is the product of an orthogonal matrix Q and a upper triangular matrix R. $U = QR$

Q is orthogonal

R is upper triangular

Original matrix

Q is orthogonal

($QTQ = I$)
Orthonormalize the system of vectors:

\[U = [u_1, u_2, u_3] = \begin{pmatrix} 1 & -4 & 3 \\ -1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & -2 & -1 \end{pmatrix} \]

For this example:

1) what is \(Q \)? what is \(R \)?

2) Verify (matlab) that \(U = QR \)

3) Compute \(Q^TQ \). [Result should be the identity matrix]

Solving LS systems via QR factorization

- In practice: not a good idea to solve the system $A^T A x = A^T b$. Use the QR factorization instead. How?

- Answer in the form of an exercise

Problem: $A x \approx b$ in least-squares sense

- A is an $m \times n$ (full-rank) matrix. Consider the QR factorization of A

 $$ A = Q R $$

- **Approach 1:** Write the normal equations – then ‘simplify’

- **Approach 2:** Write the condition $b - A x \perp \text{Col}(A)$ and recall that A and Q have the same column space.

- **Total cost?**