Matrix operations: Matrix-vector product

- Product of the matrix A by the vector x:

$$y = A \cdot x$$

$$\begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_j \\
\vdots \\
\beta_n
\end{bmatrix} = \begin{bmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{bmatrix} \begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_j \\
\vdots \\
\alpha_n
\end{bmatrix}$$

$$= \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$$

- x, y are vectors; y is the result of $A \times x$.
- a_1, a_2, \ldots, a_n are the columns of A

- Can get i-th component of the result y without the others:

$$\beta_i = \alpha_1 a_{i1} + \alpha_2 a_{i2} + \cdots + \alpha_n a_{in}$$

Example: In the above example extract β_2

$$\beta_2 = (-2) \times 0 + (1) \times (-1) + (-3) \times (3) = -10$$

- Can compute $\beta_1, \beta_2, \ldots, \beta_m$ in this way.
- This is the 'row-wise' form of the 'matvec'

Matrix operations: Matrix-Matrix product

- When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times b$ matrix defined as

$$AB = [Ab_1, Ab_2, \ldots, Ab_p]$$

- Each Ab_j is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension $m \times p$

- Can use what we know on matvecs to perform the product

1. Column form – In words:

"The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \ldots, b_{nj}$" (entries of j-th col. of B)
Example: \(A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \) \(B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} \) \(AB =? \)

\[B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \]

First column has been computed before: it is equal to:
\((-2)\)*(col. 1 of \(A \)) + \((1)\) *(col. 2 of \(A \)) + \((-3)\) *(col. 3 of \(A \))

Second column is equal to:
\((1)\) *(col. 1 of \(A \)) + \((-2)\) *(col. 2 of \(A \)) + \((2)\) *(col. 3 of \(A \))

Fix \(j \) and run \(i \) \(\rightarrow \) column-wise form just seen

Fix \(i \) and run \(j \) \(\rightarrow \) row-wise form

Example: Get second row of \(AB \) in previous example.

\(c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2 \)

Can be read as: \[c_{2} = a_{21}b_{1} + a_{22}b_{2} + a_{23}b_{3}, \] or in words:
row2 of \(C = a_{21} \) (row1 of \(B \)) + \(a_{22} \) (row2 of \(B \)) + \(a_{23} \) (row3 of \(B \))
\(= 0 \) (row1 of \(B \)) + \((-1)\) (row2 of \(B \)) + \((3)\) (row3 of \(B \))
\(= [-10 \quad 8] \)