LINEAR MAPPINGS [1.8]
A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule which assigns to every x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

\mathbb{R}^n is called the domain space of T and \mathbb{R}^m the image space or co-domain of T.

Notation:

$$T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$T(x)$ is the image of x under T
Example: Take the mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longrightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1x_2 \\ x_1^2 + x_2^2 \end{pmatrix}$$

Example: Another mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longrightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 + 5x_2 \end{pmatrix}$$

What is the main difference between these 2 examples?
A mapping T is linear if:

(i) $T(u + v) = T(u) + T(v)$ for u, v in the domain of T
(ii) $T(\alpha u) = \alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

The mapping of the second example given above is linear - but not for the first one.

If a mapping is linear then $T(0) = 0$. (Why?)

A mapping is linear if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

for all scalars α, β and all u, v in the domain of T.

Prove this
Given an \(m \times n \) matrix \(A \), consider the special mapping:

\[
T : \mathbb{R}^n \longrightarrow \mathbb{R}^m \\
x \longrightarrow y = Ax
\]

Domain == ??; Image space == ??

From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

As it turns out:

If \(T \) is linear, there exists a matrix \(A \) such that \(T(x) = Ax \) for all \(x \) in \(\mathbb{R}^n \)

In plain English: ‘A linear mapping can be represented by a matvec’

\(A \) is the representation of \(T \).
Let A be a square matrix. Is the mapping $x \to x + Ax$ linear? If so find the matrix associated with it.

Same questions for the mapping $x \to Ax + \alpha x$ - where α is a scalar.

Express the following mapping from \mathbb{R}^3 to \mathbb{R}^2 in matrix/vector form:

\[
\begin{align*}
y_1 &= 2x_1 - x_2 + 1 \\
y_2 &= x_2 - x_3 - 2
\end{align*}
\]

Is this a linear mapping?

Read Section 1.9 and explore the notions of onto mappings (‘surjective’) and one-to-one mappings (‘injective’) in the text. You must at least know the definitions.

A mapping is onto if and only if

A mapping is one-to-one if and only if
MATRIX OPERATIONS [2.1]
If A is an $m \times n$ matrix (m rows and n columns) – then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i, j)-entry of A.

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & & \vdots & & \vdots \\
a_{i1} & \cdots & \boxed{a_{ij}} & \cdots & a_{in} \\
\vdots & & \vdots & & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{pmatrix} = A
\]
The number \(a_{ij} \) is the \(i \)th entry (from the top) of the \(j \)th column.

Each column of \(A \) is a list of \(m \) real numbers, which identifies a vector in \(\mathbb{R}^m \) called a column vector.

The columns are denoted by \(a_1, \ldots, a_n \), and the matrix \(A \) is written as \(A = [a_1, a_2, \ldots, a_n] \).
The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.

A diagonal matrix is a matrix whose nondiagonal entries are zero.

An important example is the $n \times n$ identity matrix, I_n (each diagonal entry equals one) - Example:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Another important matrix is the zero matrix (all entries are 0). It is denoted by O.

7-10
Equality of two matrices: Two matrices A and B are equal if they have the same size (they are both $m \times n$) and if their entries are all the same.

$$a_{ij} = b_{ij} \text{ for all } i = 1, \cdots, m, \quad j = 1, \cdots, n$$

Sum of two matrices: If A and B are $m \times n$ matrices, then their sum $A + B$ is the $m \times n$ matrix whose entries are the sums of the corresponding entries in A and B.

If we call C this sum we can write:

$$c_{ij} = a_{ij} + b_{ij} \text{ for all } i = 1, \cdots, m, \quad j = 1, \cdots, n$$

$$\begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -3 \\ 0 & 2 & -2 \end{bmatrix} = ??; \quad \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 2 & -2 \end{bmatrix} = ??$$
scalar multiple of a matrix

If \(r \) is a scalar and \(A \) is a matrix, then the scalar multiple \(rA \) is the matrix whose entries are \(r \) times the corresponding entries in \(A \).

\[
(\alpha A)_{ij} = \alpha a_{ij} \quad \text{for all } i = 1, \ldots, m, \quad j = 1, \ldots, n
\]

Theorem Let \(A, B, \) and \(C \) be matrices of the same size, and let \(\alpha \) and \(\beta \) be scalars. Then

- \(A + B = B + A \)
- \((A + B) + C = A + (B + C) \)
- \(A + 0 = A \)
- \(\alpha(A + B) = \alpha A + \alpha B \)
- \((\alpha + \beta)A = \alpha A + \beta A \)
- \(\alpha(\beta A) = (\alpha \beta)A \)

Prove all of the above equalities
Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(Bx)$.

Thus $A(Bx)$ is produced from x by a composition of mappings—the linear transformations induced by B and A.
Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p.

Denote the columns of B by b_1, \cdots, b_p and the entries in x by x_1, \cdots, x_p. Then:

$$Bx = x_1b_1 + \cdots + x_pb_p$$
By the linearity of multiplication by A:

\[A(Bx) = A(x_1b_1) + \cdots + A(x_pb_p) = x_1Ab_1 + \cdots + x_pAb_p \]

The vector $A(Bx)$ is a linear combination of Ab_1, \cdots, Ab_p, using the entries in x as weights.

In matrix notation, this linear combination is written as

\[A(Bx) = [Ab_1, Ab_2, \cdots, Ab_p].x \]

Thus, multiplication by $[Ab_1, Ab_2, \cdots, Ab_p]$ transforms x into $A(Bx)$.

Therefore the desired matrix C is the matrix

\[C = [Ab_1, Ab_2, \cdots, Ab_p] \]

Denoted by AB
Definition: If \(A \) is an \(m \times n \) matrix, and if \(B \) is an \(n \times p \) matrix with columns \(b_1, \cdots, b_p \), then the product \(AB \) is the matrix whose \(p \) columns are \(Ab_1, \cdots, Ab_p \). That is:

\[
AB = A[b_1, b_2, \cdots, b_p] = [Ab_1, Ab_2, \cdots, Ab_p]
\]

Important to remember that:

Multiplication of matrices corresponds to composition of linear transformations.

Operation count: How many operations are required to perform product \(AB \)?
Compute \(AB \) when
\[
A = \begin{bmatrix}
2 & -1 \\
1 & 3
\end{bmatrix} \quad B = \begin{bmatrix}
0 & 2 & -1 \\
1 & 3 & -2
\end{bmatrix}
\]

Compute \(AB \) when
\[
A = \begin{bmatrix}
2 & -1 & 2 & 0 \\
1 & -2 & 1 & 0 \\
3 & -2 & 0 & 0
\end{bmatrix} \quad B = \begin{bmatrix}
1 & -1 & -2 \\
0 & -2 & 2 \\
2 & 1 & -2 \\
-1 & 3 & 2
\end{bmatrix}
\]

Can you compute \(AB \) when
\[
A = \begin{bmatrix}
2 & -1 \\
1 & 3
\end{bmatrix} \quad B = \begin{bmatrix}
0 & 2 \\
1 & 3 \\
-1 & 4
\end{bmatrix}
\]
Row-wise matrix product

- Recall what we did with matrix-vector product to compute a single entry of the vector Ax.
- Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?
- Do this to compute entry $(2,2)$ in the first example above.
- Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?
Properties of matrix multiplication

Theorem Let \(A \) be an \(m \times n \) matrix, and let \(B \) and \(C \) have sizes for which the indicated sums and products are defined.

- \(A(BC) = (AB)C \) (associative law of multiplication)
- \(A(B + C) = AB + AC \) (left distributive law)
- \((B + C)A = BA + CA \) (right distributive law)
- \(\alpha(AB) = (\alpha A)B = A(\alpha B) \) for any scalar \(\alpha \)
- \(I_mA = A = AI_n \) (product with identity)

If \(AB = AC \) then \(B = C \) (‘simplification’) : True-False?

If \(AB = 0 \) then either \(A = 0 \) or \(B = 0 \) : True or False?

\(AB = BA \) : True or false??
Square matrices. Matrix powers

- Important particular case when $n = m$ - so matrix is $n \times n$
- In this case if x is in \mathbb{R}^n then $y = Ax$ is also in \mathbb{R}^n
- AA is also a square $n \times n$ matrix and will be denoted by A^2
- More generally, the matrix A^k is the matrix which is the product of k copies of A:
 \[
 A^1 = A; \quad A^2 = AA; \quad \cdots \quad A^k = \underbrace{A \cdots A}_{k \text{ times}}
 \]
- For consistency define A^0 to be the identity: $A^0 = I_n$
- $A^l \times A^k = A^{l+k}$ – Also true when k or l is zero.
Transpose of a matrix

Given an \(m \times n \) matrix \(A \), the transpose of \(A \) is the \(n \times m \) matrix, denoted by \(A^T \), whose columns are formed from the corresponding rows of \(A \).

Theorem : Let \(A \) and \(B \) denote matrices whose sizes are appropriate for the following sums and products.

- \((A^T)^T = A\)
- \((A + B)^T = A^T + B^T\)
- \((\alpha A)^T = \alpha A^T\) for any scalar \(\alpha \)
- \((AB)^T = B^T A^T\)