Ethernet Switches

- Layer 2 (frame) forwarding, filtering using LAN addresses
- **Switching**: A-to-B and A'-to-B' simultaneously, no collisions
- Large number of interfaces
- Often: individual hosts, star-connected into switch
 - Ethernet, but no collisions!
Ethernet Switches

- cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame
 - slight reduction in latency
- combinations of shared/dedicated, 10/100/1000 Mbps interfaces
Ethernet Switches (more)
IEEE 802.11 Wireless LAN

- wireless LANs: untethered (often mobile) networking
- IEEE 802.11 standard:
 - MAC protocol
 - unlicensed frequency spectrum: 900Mhz, 2.4Ghz

- Basic Service Set (BSS) (a.k.a. “cell”) contains:
 - wireless hosts
 - access point (AP): base station

- BSS’s combined to form distribution system (DS)
Ad Hoc Networks

- **Ad hoc network:** IEEE 802.11 stations can dynamically form network *without* AP

- **Applications:**
 - “laptop” meeting in conference room, car
 - interconnection of “personal” devices
 - battlefield

- **IETF MANET**
 (Mobile Ad hoc Networks)
 working group
IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender
- if sense channel idle for DISF sec.
 then transmit entire frame (no collision detection)
- if sense channel busy
 then binary backoff

802.11 CSMA receiver:
if received OK
 return ACK after SIFS
IEEE 802.11 MAC Protocol

802.11 CSMA Protocol: others

- **NAV**: Network Allocation Vector
- 802.11 frame has transmission time field
- others (hearing data) defer access for NAV time units
Hidden Terminal effect

- **hidden terminals**: A, C cannot hear each other
 - obstacles, signal attenuation
 - collisions at B
- **goal**: avoid collisions at B
- **CSMA/CA**: CSMA with Collision Avoidance

![Diagram](a)
Collision Avoidance: RTS-CTS exchange

- **CSMA/CA**: explicit channel reservation
 - **sender**: send short RTS: request to send
 - **receiver**: reply with short CTS: clear to send

- **CTS** reserves channel for sender, notifying (possibly hidden) stations

- Avoid hidden station collisions
Collision Avoidance: RTS-CTS exchange

- RTS and CTS short:
 - collisions less likely, of shorter duration
 - end result similar to collision detection

- IEEE 802.11 allows:
 - CSMA
 - CSMA/CA: reservations
 - polling from AP
Point to Point Data Link Control

- one sender, one receiver, one link: easier than broadcast link:
 - no Media Access Control
 - no need for explicit MAC addressing
 - e.g., dialup link, ISDN line
- popular point-to-point DLC protocols:
 - PPP (point-to-point protocol)
 - HDLC: High level data link control (Data link used to be considered “high layer” in protocol stack!)
PPP Design Requirements [RFC 1557]

- **packet framing**: encapsulation of network-layer datagram in data link frame
 - carry network layer data of any network layer protocol (not just IP) *at same time*
 - ability to demultiplex upwards
- **bit transparency**: must carry any bit pattern in the data field
- **error detection** (no correction)
- **connection liveness**: detect, signal link failure to network layer
- **network layer address negotiation**: endpoint can learn/configure each other’s network address
PPPoE non-requirements

- no error correction/recovery
- no flow control
- out of order delivery OK
- no need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!
PPP Data Frame

- **Flag**: delimiter (framing)
- **Address**: does nothing (only one option)
- **Control**: does nothing; in the future possible multiple control fields
- **Protocol**: upper layer protocol to which frame delivered (e.g., PPP-LCP, IP, IPCP, etc)

```
  1  1  1  1 or 2  variable length  2 or 4  1
01111110 11111111 00000011  protocol  info  check  01111110
flag address control
```
PPP Data Frame

- **info:** upper layer data being carried
- **check:** cyclic redundancy check for error detection

```
+----+----+----+    +----+----+----+----+----+----+
| 1  | 1  | 1  | 1 or 2 | 2 or 4 | 1     |
+----+----+----+    +----+----+----+----+----+----+
| 01111110 | 11111111 | 00000011 | protocol | info | check | 01111110 |
| flag    | control | address   |          |      |       | flag     |
```
Byte Stuffing

“data transparency” requirement: data field must be allowed to include flag pattern \(<01111110>\)

Q: is received \(<01111110>\) data or flag?

Sender: adds (“stuffs”) extra \(<01111110>\) byte after each \(<01111110>\) data byte

Receiver:

- two 01111110 bytes in a row: discard first byte, continue data reception
- single 01111110: flag byte
Byte Stuffing

flag byte pattern in data to send

flag byte pattern plus stuffed byte in transmitted data
PPP Data Control Protocol

Before exchanging network-layer data, data link peers must

- configure PPP link (max. frame length, authentication)
- learn/configure network layer information
 - for IP: carry IP Control Protocol (IPCP) msgs (protocol field: 8021) to configure/learn IP address
Asynchronous Transfer Mode: ATM

- 1980s/1990’s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- **Goal**: integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - “next generation” telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called “cells”) using virtual circuits
ATM architecture

- adaptation layer: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - cell switching, routing
- physical layer
ATM: network or link layer?

Vision: end-to-end transport: “ATM from desktop to desktop”
- ATM is a network technology

Reality: used to connect IP backbone routers
- “IP over ATM”
- ATM as switched link layer, connecting IP routers
ATM Adaptation Layer (AAL)

- ATM Adaptation Layer (AAL): “adapts” upper layers (IP or native ATM applications) to ATM layer below
- AAL present only in end systems, not in switches
- AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
 - analogy: TCP segment in many IP packets

```
AAL        ATM        PHY
end system

ATM        ATM        PHY
ATM switch

ATM        ATM        PHY
ATM switch

AAL        ATM        PHY
end system
```
ATM Adaption Layer (AAL) [more]

Different versions of AAL layers, depending on ATM service class:

- **AAL1**: for CBR (Constant Bit Rate) services, e.g., circuit emulation
- **AAL2**: for VBR (Variable Bit Rate) services, e.g., MPEG video
- **AAL5**: for data (e.g., IP datagrams)
AAL5 - Simple And Efficient AL (SEAL)

- **AAL5**: low overhead AAL used to carry IP datagrams
 - 4 byte cyclic redundancy check
 - PAD ensures payload multiple of 48 bytes
 - Large AAL5 data unit to be fragmented into 48-byte ATM cells

<table>
<thead>
<tr>
<th>CPCS-PDU payload</th>
<th>PAD</th>
<th>Length</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-65535</td>
<td>0-47</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
ATM Layer

Service: transport cells across ATM network
- analogous to IP network layer
- very different services than IP network layer

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>Bandwidth: none, Loss: no, Order: no, Timing: no</td>
<td>no (inferred via loss)</td>
</tr>
<tr>
<td>ATM CBR</td>
<td>constant rate</td>
<td>yes, yes, yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM VBR</td>
<td>guaranteed rate</td>
<td>yes, yes, yes</td>
<td>no congestion</td>
</tr>
<tr>
<td>ATM ABR</td>
<td>guaranteed minimum</td>
<td>no, yes, no</td>
<td>yes</td>
</tr>
<tr>
<td>ATM UBR</td>
<td>none</td>
<td>no, yes, no</td>
<td>no</td>
</tr>
</tbody>
</table>
ATM Layer: Virtual Circuits

- **VC transport**: cells carried on VC from source to dest
 - call setup, teardown for each call *before* data can flow
 - each packet carries VC identifier (not destination ID)
 - every switch on source-dest path maintain “state” for each passing connection
 - link, switch resources (bandwidth, buffers) may be *allocated* to VC: to get circuit-like perf.

- **Permanent VCs (PVCs)**
 - long lasting connections
 - typically: “permanent” route between to IP routers

- **Switched VCs (SVC)**:
 - dynamically set up on per-call basis
ATM VCs

- Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)

- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/dest pair) does not scale (N*2 connections needed)
 - SVC introduces call setup latency, processing overhead for short lived connections
ATM Layer: ATM cell

- 5-byte ATM cell header
- 48-byte payload
 - Why?: small payload -> short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

Cell header

Cell format

3rd bit in PT field; 1 indicates last cell (AAL-Indicate bit)
ATM cell header

- **VCI**: virtual channel ID
 - will change from link to link thru net
- **PT**: Payload type (e.g. RM cell versus data cell)
- **CLP**: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- **HEC**: Header Error Checksum
 - cyclic redundancy check
ATM Physical Layer (more)

Two pieces (sublayers) of physical layer:

- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

TCS Functions:

- Header **checksum** generation: 8 bits CRC
- Cell **delineation**
- With “unstructured” PMD sublayer, transmission of **idle cells** when no data cells to send
ATM Physical Layer

Physical Medium Dependent (PMD) sublayer

- **SONET/SDH**: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC1 = 51.84 Mbps; OC3 = 155.52 Mbps; OC12 = 622.08 Mbps

- **TI/T3**: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps

- **unstructured**: just cells (busy/idle)
IP-Over-ATM

Classic IP only
- 3 “networks” (e.g., LAN segments)
- MAC (802.3) and IP addresses

IP over ATM
- replace “network” (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses
IP-Over-ATM

Issues:

- IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!
Datagram Journey in IP-over-ATM Network

- **at Source Host:**
 - IP layer finds mapping between IP, ATM dest address (using ARP)
 - passes datagram to AAL5
 - AAL5 encapsulates data, segments to cells, passes to ATM layer

- **ATM network:** moves cell along VC to destination

- **at Destination Host:**
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP
ARP in ATM Nets

- ATM network needs destination ATM address
 - just like Ethernet needs destination Ethernet address
- IP/ATM address translation done by ATM ARP (Address Resolution Protocol)
 - ARP server in ATM network performs broadcast of ATM ARP translation request to all connected ATM devices
 - hosts can register their ATM addresses with server to avoid lookup
X.25 and Frame Relay

Like ATM:
- wide area network technologies
- virtual circuit oriented
- origins in telephony world
- can be used to carry IP datagrams
 - can thus be viewed as Link Layers by IP protocol
X.25 builds VC between source and destination for each user connection

- **Per-hop control along path**
 - error control (with retransmissions) on each hop using LAP-B
 - variant of the HDLC protocol
 - per-hop flow control using credits
 - congestion arising at intermediate node propagates to previous node on path
 - back to source via back pressure
IP versus X.25

- X.25: reliable in-sequence end-end delivery from end-to-end
 - “intelligence in the network”
- IP: unreliable, out-of-sequence end-end delivery
 - “intelligence in the endpoints”
- Gigabit routers: limited processing possible
- 2000: IP wins
Frame Relay

- Designed in late '80s, widely deployed in the '90s
- Frame relay service:
 - no error control
 - end-to-end congestion control
Frame Relay (more)

- Designed to **interconnect** corporate customer LANs
 - typically permanent VC's: “pipe” carrying aggregate traffic between two routers
 - switched VC’s: as in ATM
- corporate customer **leases** FR service from public Frame Relay network (eg, Sprint, ATT)
Frame Relay (more)

- Flag bits, 01111110, delimit frame
- address:
 - 10 bit VC ID field
 - 3 congestion control bits
 - FECN: forward explicit congestion notification (frame experienced congestion on path)
 - BECN: congestion on reverse path
 - DE: discard eligibility

<table>
<thead>
<tr>
<th>flags</th>
<th>address</th>
<th>data</th>
<th>CRC</th>
<th>flags</th>
</tr>
</thead>
</table>

Frame Relay - VC Rate Control

- **Committed Information Rate (CIR)**
 - defined, “guaranteed” for each VC
 - negotiated at VC set up time
 - customer pays based on CIR

- **DE bit: Discard Eligibility bit**
 - Edge FR switch measures traffic rate for each VC; marks DE bit
 - DE = 0: high priority, rate compliant frame; deliver at “all costs”
 - DE = 1: low priority, eligible for discard when congestion
Frame Relay - CIR & Frame Marking

- **Access Rate**: rate R of the access link between source router (customer) and edge FR switch (provider); $64\text{Kbps} < R < 1,544\text{Kbps}$

- Typically, **many VCs** (one per destination router) multiplexed on the same access trunk; each VC has own CIR

- Edge FR switch **measures** traffic rate for each VC; it **marks**

- (ie $DE \leq 1$) frames which **exceed** CIR (these may be later dropped)
Chapter 5: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing, ARP

- various link layer technologies
 - Ethernet
 - hubs, bridges, switches
 - IEEE 802.11 LANs
 - PPP
 - ATM
 - X.25, Frame Relay

- journey down the protocol stack now OVER!
 - Next stops: security, network management