Multimedia Applications

- Multimedia requirements
- Streaming
- Voice over IP
- Recovering from Jitter and Loss
- RTP
- Diff-serv, Int-serv, RSVP
Application Classes

- Typically sensitive to delay, but can tolerate packet loss (would cause minor glitches that can be concealed)

- Data contains audio and video content ("continuous media"), three classes of applications:
 - Streaming
 - Unidirectional Real-Time
 - Interactive Real-Time
Application Classes (more)

- **Streaming**
 - Clients request audio/video files from servers and pipeline reception over the network and display
 - Interactive: user can control operation (similar to VCR: pause, resume, fast forward, rewind, etc.)
 - Delay: from client request until display start can be 1 to 10 seconds
Application Classes (more)

- **Unidirectional Real-Time:**
 - similar to existing TV and radio stations, but delivery on the network
 - Non-interactive, just listen/view

- **Interactive Real-Time:**
 - Phone conversation or video conference
 - More stringent delay requirement than Streaming and Unidirectional because of real-time nature
 - Video: < 150 msec acceptable
 - Audio: < 150 msec good, < 400 msec acceptable
Challenges

- TCP/UDP/IP suite provides best-effort, no guarantees on expectation or variance of packet delay

- Streaming applications delay of 5 to 10 seconds is typical and has been acceptable, but performance deteriorate if links are congested (transoceanic)

- Real-Time Interactive requirements on delay and its jitter have been satisfied by over-provisioning (providing plenty of bandwidth), what will happen when the load increases?...
Challenges (more)

- Most router implementations use only First-Come-First-Serve (FCFS) packet processing and transmission scheduling
- To mitigate impact of “best-effort” protocols, we can:
 - Use UDP to avoid TCP and its slow-start phase...
 - Buffer content at client and control playback to remedy jitter
 - Adapt compression level to available bandwidth
Solution Approaches in IP Networks

- Just add more bandwidth and enhance caching capabilities (over-provisioning)!

- Need major change of the protocols:
 - Incorporate resource reservation (bandwidth, processing, buffering), and new scheduling policies
 - Set up service level agreements with applications, monitor and enforce the agreements, charge accordingly

- Need moderate changes (“Differentiated Services”):
 - Use two traffic classes for all packets and differentiate service accordingly
 - Charge based on class of packets
 - Network capacity is provided to ensure first class packets incur no significant delay at routers
Streaming

- Important and growing application due to reduction of storage costs, increase in high speed net access from homes, enhancements to caching and introduction of QoS in IP networks

- Audio/Video file is segmented and sent over either TCP or UDP, public segmentation protocol: Real-Time Protocol (RTP)
Streaming

- User interactive control is provided, e.g. the public protocol **Real Time Streaming Protocol (RTSP)**

- **Helper Application**: displays content, which is typically requested via a Web browser; e.g. RealPlayer; typical functions:
 - Decompression
 - Jitter removal
 - Error correction: use redundant packets to be used for reconstruction of original stream
 - GUI for user control
Streaming From Web Servers

- Audio: in files sent as HTTP objects
- Video (interleaved audio and images in one file, or two separate files and client synchronizes the display) sent as HTTP object(s)

- A simple architecture is to have the Browser requests the object(s) and after their reception pass them to the player for display
 - No pipelining
Streaming From Web Server (more)

- Alternative: set up connection between server and player, then download
- Web browser requests and receives a Meta File (a file describing the object) instead of receiving the file itself;
- Browser launches the appropriate Player and passes it the Meta File;
- Player sets up a TCP connection with Web Server and downloads the file
Meta file requests

1. HTTP request/response for meta file
2. Meta file
3. Audio/video file requested and sent over HTTP
Using a Streaming Server

- This gets us around HTTP, allows a choice of UDP vs. TCP and the application layer protocol can be better tailored to Streaming; many enhancements options are possible (see next slide).
Options When Using a Streaming Server

- Use UDP, and Server sends at a rate (Compression and Transmission) appropriate for client; to reduce jitter, Player buffers initially for 2-5 seconds, then starts display.

- Use TCP, and sender sends at maximum possible rate under TCP; retransmit when error is encountered; Player uses a much large buffer to smooth delivery rate of TCP.
Real Time Streaming Protocol (RTSP)

- For user to control display: rewind, fast forward, pause, resume, etc...
- Out-of-band protocol (uses two connections, one for control messages (Port 554) and for media stream)
- RFC 2326 permits use of either TCP or UDP for the control messages connection, sometimes called the RTSP Channel
- As before, meta file is communicated to web browser which then launches the Player; Player sets up an RTSP connection for control messages in addition to the connection for the streaming media
<title>Twister</title>

<session>
 <group language=en lipsync>
 <switch>
 <track type=audio
 e="PCMU/8000/1"
 src = "rtsp://audio.example.com/twister/audio.en/lofi">
 <track type=audio
 e="DVI4/16000/2" pt="90 DVI4/8000/1"
 src="rtsp://audio.example.com/twister/audio.en/hifi">
 </switch>
 <track type=video/jpeg
 src="rtsp://video.example.com/twister/video">
 </group>
 </session>
RTSP Operation

Web browser

HTTP GET
presentation desc.

Web server

SETUP

media player

PLAY

client

media stream

PAUSE

server

TEARDOWN
RTSP Exchange Example

C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0
 Transport: rtp/udp; compression; port=3056; mode=PLAY

S: RTSP/1.0 200 1 OK
 Session 4231

C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
 Session: 4231
 Range: npt=0-

C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
 Session: 4231
 Range: npt=37

C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
 Session: 4231

S: 200 3 OK
Real-Time (Phone) Over IP’s Best-Effort

- Internet phone applications generate packets during talk spurts
- Bit rate is 8 KBytes, and every 20 msec, the sender forms a packet of 160 Bytes + a header to be discussed below
- The coded voice information is encapsulated into a UDP packet and sent out; some packets may be lost; up to 20 % loss is tolerable; using TCP eliminates loss but at a considerable cost: variance in delay; FEC is sometimes used to fix errors and make up losses
Real-Time (Phone) Over IP’s Best-Effort

- End-to-end delays above 400 msec cannot be tolerated; packets that are that delayed are ignored at the receiver.
- Delay jitter is handled by using timestamps, sequence numbers, and delaying playout at receivers either a fixed or a variable amount.
- With fixed playout delay, the delay should be as small as possible without missing too many packets; delay cannot exceed 400 msec.
Adaptive Playout Delay

- Objective is to use a value for p-r that tracks the network delay performance as it varies during a phone call.
- The playout delay is computed for each talk spurt based on observed average delay and observed deviation from this average delay.
- Estimated average delay and deviation of average delay are computed in a manner similar to estimates of RTT and deviation in TCP.
- The beginning of a talk spurt is identified from examining the timestamps in successive and/or sequence numbers of chunks.
Recovery From Packet Loss

- Loss is in a broader sense: packet never arrives or arrives later than its scheduled playout time.
- Since retransmission is inappropriate for Real Time applications, **FEC** or Interleaving are used to reduce loss impact.
- **FEC** is Forward Error Correction.
- Simplest FEC scheme adds a redundant chunk made up of exclusive OR of a group of n chunks; redundancy is 1/n; can reconstruct if at most one lost chunk; playout time schedule assumes a loss per group.
Recovery From Packet Loss

- Mixed quality streams are used to include redundant duplicates of chunks; upon loss playout available redundant chunks, albeit a lower quality one
- With one redundant chunk per chunk can recover from single losses
Piggybacking Lower Quality Stream

Original Stream
Redundancy
Packet Loss
Reconstructed Stream
Interleaving

- Has no redundancy, but can cause delay in playout beyond Real Time requirements
- Divide 20 msec of audio data into smaller units of 5 msec each and interleave
- Upon loss, have a set of partially filled chunks