Constraint sat. prob. (Ch. 6)
Announcements

Writing 2 due today
Will post HW3 tonight
CSP vs. search

Let us go back to Australia coloring:

How can you color using current techniques?
CSP vs. search

We can use an incremental approach:

State = currently colored provinces (and their color choices)

Action = add a new color to any province that does not conflict with the constraints

Goal: To find a state where all provinces are colored
CSP vs. search

Is there a problem?
CSP vs. search

Is there a problem?

Let $d =$ domain size (number of colorings), $n =$ number of variables (provinces)

The number of leaves are $n! \times d^n$

However, there are only d^n possible states in the CSP so there must be a lot of duplicate leaves (not including mid-tree parts)
CSP vs. search

CSP assumes one thing general search does not: the order of actions does not matter.

In CSP, we can assign a value to a variable at any time and in any order without changing the problem (all we care about is the end state).

So all we need to do is limit our search to one variable per depth, and we will have a match with CSP of d^n leaves (all combinations).
CSP vs. search

Let's apply CSP modified DFS on Australia:
(assign values & variables in alphabetical order)

1st: blue
2nd: green
3rd: red
CSP vs. search

NSW: [Color: Blue]

NT: [Color: Green]

Q: [Color: Red]

SA: [Color: Red] X X X X X X

T: [Color: Red] X X X X

Nothing colored
CSP vs. search

STOP PICKING BLUE EVERY TIME!!!!
CSP backtracking

However, this is still hope for searching (called backtracking search (it backups up at conflict))

We will improve it by...
1. The order we pick variables
2. The order we pick values for variables
3. Mix search with inference
4. Smarter backtracking
1. What variable?

When picking the variables, we want to the variable with the smallest domain (the most restricted variable)

The best-case is that there is only one value in the domain to remain consistent

By picking the most constrained variables, we fail faster and are able to prune more of the tree
1. What variable?

Suppose we pick \{WA = red\}, it would be silly to try and color V next.

Instead we should try to color NT or SA, as these only have 2 possible colorings, while the rest have 3.

This will immediately let the computer know that it cannot color NT or SA red (prune these branches right way).
1. What variable?

But we can do even better!

If there is a tie for possible values to take, we pick the variable with the most connections.

This ensures that other nodes are more restricted to again prune earlier.

For example, we should color SA first as it connects to 5 other provinces.
2. What value?

After we picked a variable to look at, we must assign a value.

Here we want to do the opposite: choose the value which constrains the neighbors the least.

This is “putting your best foot forward” or trying your best to find a goal (while failing fast helps pruning, we do actually want to find a goal not prune as much as possible).
2. What value?

For example, if we color \(\{WA = \text{red}\} \) then pick \(Q \) next.

Our options for \(Q \) are \(\{\text{red, green or blue}\} \), but picking \(\{\text{green or blue}\} \) limit \(NT \) & \(SA \) to only one valid color and \(NSW \) to 2.

If we pick \(\{Q=\text{red}\} \), then \(NT \), \(SA \) & \(NSW \) all have 2 valid possibilities (and this happens to be on a solution path).
An analogy to 1&2 is: “trying our best (2) to solve the weakest link (1)”

By tackling the weakest link first, it will be easier for less constrained nodes to adapt/pick up the slack

However, we do want to try and solve the problem, not find the quickest way to fail (i.e. always picking blue... ... >.<)
3. Mix search & inference?

Last time we described how AC-3 can use inference to reduce the domain size.

Inference does not need to run in isolation; it works better to assign a value then apply inference to prune before even searching.

This works well in combination with 1 as uses the domain size to choose the variable and 3 shrinking domain sizes to be consistent.
3. Mix search & inference?

This is somewhat similar to providing a heuristic for our original search.

Inference lets us know an estimation of what colors are left and can be done efficiently.

We can use this estimate to guide our search more directly towards the goal.
3. Mix search & inference?

In the previous example: \{WA = \text{red}\}, then color Q

We want to choose \{Q = \text{red}\} to allow the most choices for NT and SA

Without inference we will not know about this restriction and just have assign and realize this constraint when we create a conflict
4. Smart backtracking

Instead of moving our search back up a single layer of the tree and picking from there...

We could backup to the first node above the conflict that was actually involved in the conflict

This avoids in-between nodes which did not participate in the conflict
4. Smart backtracking

Suppose we assigned (in this order):
{WA = B, SA = G, Q = R, T = R}
then pick NT

NT has all three colors neighboring it, so a conflict is reached

In normally, we would backtrack and try to change T (i.e. 4), but this was actually not involved in the conflict (1, 2 & 3 were)
Local search

So far we have been looking at incremental search (adding one value at a time)

Complete-state searches are also possible in CSPs and can be quite effective

A popular method is to find the min-conflict, where you pick a random variable and update the choice to be one that creates the least number of conflicts
Local search

This works incredibly well for the n-queens problem (partially due to dense solutions)
Local search

As with most local searches (hill-climbing), this method has issues with plateaus.

This can be mitigated by avoiding recently assigned variables (forces more exploration).

You can also apply weights to constraints and update them based on how often they are violated (to estimate which constraints are more restrictive than others).
Local search does not have “locally optimal” solution our general search does.

As we have a CSP, the “local optimal” may occur, but if it is not 0 then we know we are not satisfied (unless we searched the whole space and find no goal).

This is almost as if we had an almost perfect heuristic built in to the problem!