Fault-Tolerant Total Order Multicast
to Asynchronous Groups

Udo FRITZKE Jr.† Philippe INGELS Achour MOSTEFAOUI Michel RAYNAL
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{ufritzke,ingels,achour,raynal}@irisa.fr

Abstract

While Total Order Broadcast (or Atomic Broadcast) primitives have received a lot of attention, this paper concentrates on Total Order Multicast to Multiple Groups in the context of asynchronous distributed systems in which processes may suffer crash failures. "Multicast to Multiple Groups" means that each message is sent to a subset of the process groups composing the system, distinct messages possibly having distinct destination groups. "Total Order" means that all message deliveries must be totally ordered.

This paper proposes a protocol for such a multicast primitive. This protocol is based on two underlying building blocks, namely, Uniform Reliable Multicast and Uniform Consensus. Its design characteristics lie in the two following properties. The first one is a Minimality property, more precisely, only the sender of a message and processes of its destination groups have to participate in the multicast of the message. The second property is a Locality property: no execution of a consensus has to involve processes belonging to distinct groups (i.e., consensus are executed on a “per group” basis). This Locality property is particularly useful when one is interested in using the Total Order Multicast primitive in large scale distributed systems. An improvement that reduces the cost of the protocol is also suggested.

1 Introduction

Total Order Broadcast (also called Atomic Broadcast) is one of the most important agreement problems encountered in the design and the implementation of fault-tolerant distributed systems. This problem consists in providing processes with a communication primitive that allows them to broadcast and deliver messages in such a way that processes agree not only on the set of messages they deliver but also on the order of message deliveries. Total order broadcast has been identified as a basic communication primitive in many systems (such as the ones described in [16]). It is particularly useful to implement fault-tolerant services by using software-based replication. By employing this primitive to disseminate updates, all correct (i.e., non-crashed) copies of a service are delivered the same set of updates in the same order, and consequently the state of the service is kept consistent.

It has been shown in [4] that Total Order Broadcast and Consensus are equivalent problems in asynchronous systems prone to process crash failures. So, all results attached to the consensus problem also hold for total order broadcast. More specifically, the Fisher-Lynch-Paterson’s impossibility result [6] also applies to total order broadcast. Namely, it is impossible to solve the total order broadcast problem in an asynchronous system prone to even a single process crash. To circumvent this impossibility result, Chandra and Toueg have introduced the Unreliable Failure Detector concept. More precisely, they have shown that it is possible to solve the consensus problem (and hence the total order broadcast problem) in an asynchronous system equipped with unreliable failure detectors if those satisfy some minimal properties (called weak completeness and eventual weak accuracy). Consensus protocols based on such failure detectors are described in [4, 13, 17].

Usually, at some abstraction level, a system can be perceived as a set of (non-intersecting) groups, each group being composed of a set of processes (for example, a group can be a set of replicas implementing a fault-tolerant object). In such a system, the adequate communication primitive is the Multicast to Multiple Groups. While the target of a broadcast primitive is the set of all processes composing the system, the target of a multicast is limited to the processes belonging to a set of groups, distinct multiscasts possibly having distinct targets. So, the target of a multicast is a set of groups dynamically defined by a parameter of the multicast (by a field of the multicast message).

As for broadcast, according to the properties related to the sets of delivered messages and to the order of message deliveries, several multicast primitives can be defined [11]. Here, we are interested in the Total Order Multicast primitive defined in the following way. Let \(m < m' \) if a process delivers \(m \) before \(m' \). Then the message delivery relation “\(<\)” must be acyclic.

Total order multicast to multiple groups is particularly interesting either to implement data consistency criteria such as linearizability [12] or normality [9] (which allows an operation to perform on several objects), or to implement a specific class of transactions. Let us consider the following example taken from [18]. Consider a classical transaction that transfers $1,000 from bank account #1 to bank account #2. To achieve fault-tolerance, assume that each bank account is replicated on several nodes, and assume that every replica is managed by a process. Let \(g_1 \) be the fault-tolerant group of processes that manage bank account #1, and let \(g_2 \) be the fault-
tolerant group of processes that manage bank account #2. The two operations (withdrawal and deposit) can be aggregated into a single message by defining m as: (remove $1,000 from account #1; add $1,000 to account #2). When a process in g1 delivers m, it removes $1,000 from the bank account it manages; when a process in g2 delivers m, it adds $1,000 to the bank account it manages. In this distributed setting, the money transfer transaction can be expressed as the total order multicast of m to the groups g1 and g2. It is easy to see that the total order property of multicast ensures the serializability of transactions.

A simple way to implement total order multicast to multiple groups is to use total order broadcast. Each message is sent with the total order broadcast primitive, and only processes belonging to a destination group are required to deliver it. This implementation is particularly inefficient. In a transaction system, such an approach would require that the implementation of any transaction accesses all the objects. So, the notion of genuine implementation of total order multicast has been introduced in [10]: an implementation is genuine if it satisfies the following Minimality property: “the only processes involved in the implementation of a total order multicast are the sender of the message and the processes belonging to destination groups”. The brute force implementation based on total order broadcast obviously does not satisfy this Minimality property. It has been shown in [10] that it is not possible to design a genuine implementation of total order multicast to multiple groups when both groups and failure detectors are unreliable. That is why, in the following, we consider that groups are reliable (i.e., in each group, there is a majority of processes that do not crash).

In this paper, we are interested in designing a protocol implementing total order multicast to multiple groups, in the context of asynchronous distributed systems where processes may crash. This implementation has two noteworthy properties. The first is the previous Minimality property. The protocol is based on the following principle. Each group has a logical clock to generate timestamps for the messages it receives. When they receive a message m, processes of a group g use a consensus protocol as a sub-protocol to associate a single timestamp with m; this is the timestamp proposed by the group g for m. Then, the groups that are destinations of m exchange their proposals and compute the maximal one which becomes the definitive timestamp associated with m. Then, within each group, processes execute a second consensus protocol to consistently update their logical clocks that locally implement the clock of the group. Finally, a message can be delivered by a process as soon as it has the lowest timestamp among all undelivered messages. If each group reduces to a single reliable process, the proposed protocol reduces to the well-known Skeen’s protocol (described in [2]). On the other hand, if the system is composed of a single group, the proposed protocol reduces to a protocol close to the one designed by Chandra and Toueg for total order broadcast [4].

The second noteworthy property of the protocol is a Locality property. From a scalability point of view, a protocol in which each consensus is limited to a single group is preferable to a protocol in which several groups are involved in a consensus. So, we say that a consensus-based group protocol has the Locality property if no of its underlying consensus involves several groups. Such an approach favors a hierarchical decomposition of the problem and a modular implementation (each group can have its own consensus protocol). This is particularly attractive to implement total order multicast to multiple groups in large scale distributed systems. So, in asynchronous systems where communications are reliable and where processes can crash, the proposed protocol works when a consensus protocol works in each group taken individually.

The implementation of a multicast to multiple groups primitive has been addressed in several works. We review here a few of them. The ISIS system [2] implements a weaker primitive, namely Local Total Order multicast (the relation “<” on message deliveries has not to be acyclic; only its projections on each group have to be acyclic). Total order multicast protocols implemented in TOTEM [1] and in TRANSIS [5] do not satisfy the Minimality property. The total order multicast protocol proposed in [8] assumes a perfect failure detector.

This paper is composed of seven sections. First Section 2 defines Total Order Multicast to Multiple Groups in asynchronous systems. Then, Section 3 presents the two underlying building blocks on top of which the proposed protocol is built (namely, Uniform Reliable Multicast and Uniform Consensus). Then, Section 4 presents the basic principles of the protocol and describes it. This protocol satisfies the Locality and the Minimality properties. Section 5 proves the protocol works. Section 6 describes an improvement that can considerably reduce the cost of the protocol.

2 Total Order Multicast

2.1 Asynchronous Systems and Groups

We consider a system composed of a finite set Π of processes p1, p2, . . . , pn. A process can fail by crashing, i.e., by prematurely halting. A process behaves correctly (i.e., according to its specification which is defined by its program text) until it (possibly) crashes. By definition a correct process is a process that never crashes. Moreover, a crashed process remains crashed forever (Section 6.2 considers a crash/recovery model).

Processes communicate and synchronize by exchanging messages through communication channels. Every pair of processes is connected by a channel whose reliability is defined in the following way: a message sent by a process pi to a process pj is eventually received by pj if pi and pj are correct. Processes communicate by exchanging messages. The absence of a fixed bound on process relative speed and on message transfer delays makes the system asynchronous.

The set Π of processes is statically partitioned into non-empty non-intersecting groups g1, g2, . . . , gs (i.e., ∀i : gi ̸= ∅, ∀i ̸= j : gi ∩ gj = ∅ and ∪s i=1 gi = Π). How and why these groups are defined depends on the structure of the system or on the needs of upper layer applications. From the point of view of this paper, these points are irrelevant, we only consider groups do exist.
2.2 Total Order Multicast to Multiple Groups

We suppose all messages are distinct\(^2\). Let \(m \) be a message. Its field named \(m _ \text{dest} \) denotes the non-empty set of groups to which \(m \) is sent. This field is filled in with group names by the sender before it sends \(m \).

Total Order Multicast to Multiple Groups (in short TO-multicast) is defined by two primitives, namely, \(\text{TO-multicast}(m) \) and \(\text{TO-deliver}(m) \). \(\text{TO-multicast}(m) \) allows a process to send a message \(m \) to the processes of each group belonging to \(m _ \text{dest} \). \(\text{TO-deliver}(m) \) allows a process to deliver the message \(m \) sent by the invocation \(\text{TO-multicast}(m) \).

As in [11], when a process executes \(\text{TO-multicast}(m) \) (resp. \(\text{TO-deliver}(m) \)) we say that it “TO-multicasts” \(m \) (resp. “TO-delivers” \(m \)). The semantics of these primitive is defined by the following four properties\(^3\) [11]:

Uniform Validity If a process \(p \) TO-delivers \(m \), then some process has TO-multicast \(m \) and \(p \) belongs to a group \(g \) such that \(g \in m _ \text{dest} \). This property defines the value domain of a delivered message (no spurious messages).

Uniform Integrity A process TO-delivers a message \(m \) at most once (no message duplication).

Termination If (1) a correct process TO-multicasts \(m \), or if (2) a process TO-delivers \(m \), then all correct processes that belong to another group of \(m _ \text{dest} \) TO-deliver \(m \). This property defines the situations in which the multicast must terminate, i.e., the message \(m \) must eventually be delivered to its correct destination processes.

There are two such situations. The first one is when the sender is correct (it has executed \(\text{TO-multicast}(m) \) without crashing). The second one is when the message has been TO-delivered by a process. Said another way, the only case in which a multicast can not terminate is when the sender process crashes (e.g., during its invocation of \(\text{TO-multicast}(m) \)).

Global Total Order Let “\(<\)” be the relation on messages defined in the following way: if a process TO-delivers \(m_1 \) before \(m_2 \), then \(m_1 < m_2 \). The relation “\(<\)” is acyclic. The set of delivered messages can be totally ordered (by doing a topological sort of “\(<\)” in a way consistent with the message delivery order at each process.

3 Underlying Protocols and Failures Related Assumptions

The protocol presented in Section 4 provides an implementation of TO-multicast that satisfies both the Minimality and the Locality properties. It is based on two building blocks, each of them solving a particular problem, namely, Uniform Reliable Multicast and Uniform Consensus. This section presents these two problems and states the additional assumptions that have to be satisfied in order these problems can be solved.

\(^2\)This can be easily ensured by adding an identity to each message, an identity being a pair (sequence number, sender identity).

\(^3\)Some properties are qualified as being uniform [11]. A process mentioned in an uniform property can crash later. Conversely, a process mentioned in the same but non-uniform property is always supposed to be correct (never crashes). Here, we consider only uniform properties. From a practical point of view this is particularly meaningful: until it (possibly) crashes any process is a priori considered as being potentially correct.

3.1 Uniform Reliable Multicast

Uniform Reliable Multicast to Multiple Groups is defined by two primitives [11]: \(\text{R-multicast}(m) \) and \(\text{R-deliver}(m) \). The semantics of these primitives is defined by the first three properties of TO-multicast, namely, Uniform Validity, Uniform Integrity and Termination where the primitive identifiers TO-multicast and TO-deliver are replaced by \(\text{R-multicast} \) and \(\text{R-deliver} \), respectively. Said in another way, TO-multicast = Uniform Reliable Multicast + Global Total Order.

Implementation of Uniform Reliable Multicast is relatively easy. When a process receives a message \(m \) for the first time, it first forwards \(m \) to the processes belonging to groups in \(m _ \text{dest} \) and only then considers the delivery of \(m \) [11]. As we will see in Section 4, adding a total order delivery constraint to uniform reliable multicast is not a trivial task. Moreover, when the system is composed of a single group, broadcast and multicast confuse, and Chandra and Toueg have shown in [4] that total order broadcast and consensus are equivalent problems.

3.2 Uniform Consensus

As in our TO-multicast protocol each instance of the consensus problem is local to a group (i.e., involves processes of a single group), we assume a single group to formulate this problem.

In the Consensus problem each process proposes a value and all correct processes have to decide on some value \(v \) that is related to the set of proposed values [6]. Formally, the Uniform Consensus problem is defined in terms of two primitives: propose and decide. As in previous works (e.g., [4]), when a process \(p \) invokes \(\text{propose}(w) \), where \(w \) is its proposal to the consensus, we say that \(p \) “proposes” \(w \). In the same way, when \(p \) invokes \(\text{decide}(v) \) and gets \(v \) as a result, we say that \(p \) “decides” \(v \) (denoted \(\text{decide}(v) \)).

The semantics of propose and decide is defined by the following properties:

Uniform Validity If a process decides \(v \), then \(v \) was proposed by some process.

Uniform Integrity A process decides at most once. (This property states that from the point of view of each process, there is a single decision.)

Termination All correct processes eventually decide. (At least all correct processes decide.)

Uniform Agreement No two processes (correct or not) decide differently. (This property gives its global meaning to the consensus.)

3.3 About Failures

As noted in the Introduction, it has been shown by Fischer, Lynch and Paterson [6] that the consensus problem has no deterministic solution in asynchronous distributed systems that are subject to even a single process crash failure. Intuitively, this negative result is due to the impossibility to safely distinguish (in an asynchronous setting) a crashed process from a slow process (or from a process with which communications are very slow).
This impossibility result has motivated researchers to find a set of minimal assumptions that, when satisfied by a distributed system, makes consensus solvable in this system. Chandra-Toueg’s Unreliable Failure Detector concept constitutes an answer to this challenge [4]. From a practical point of view, an unreliable failure detector can be seen as a set of oracles: each oracle is attached to a process and provides it with a list of processes it suspects to have crashed. An oracle can make mistakes by not suspecting a crashed process or by suspecting a not crashed one. By restricting the domain of mistakes they can make, several classes of failure detectors can be defined. From a formal point of view, a failure detector class is defined by two properties: a liveness property, called Completeness, which addresses detection of actual failures, and a safety property, called Accuracy, which restricts the mistakes a failure detector can make. Among the classes of failure detectors defined by Chandra and Toueg, the class $\diamond S$ is characterized by the two following properties. Its liveness property is called Strong Completeness: Eventually, every crashed process is permanently suspected by every correct process. Its safety property is called Eventual Weak Accuracy: There is a time after which some correct process is never suspected. It has been shown in [3] that, provided a majority of processes are correct, these conditions are the weakest ones to solve the consensus problem\(^4\). Consensus protocols based on unreliable failure detectors of the class $\diamond S$ have been proposed in [4, 13, 17]. So, in the following we suppose that:

- Each group is equipped with a failure detector of the class $\diamond S$.
- Let f_i be the maximum number of processes of the group g_i that can crash. We assume that $\forall i: f_i < \lceil g_i / 2 \rceil$: a majority of processes are correct in each group. (This is why groups are qualified “reliable” in the Introduction.)

Note that each group can use a distinct consensus protocol. As previously noted, this is particularly attractive for scalability when implementing total order multicast in large scale distributed systems.

4 The Protocol

4.1 Underlying Principles

Our TO-multicast protocol borrows its basic principles (1) from the Lamport’s clock protocol [15] (and from its adaptation to the TO-multicast protocol designed by Skeen for failure-free systems\(^5\)), and (2) from the Chandra-Toueg’s total order broadcast protocol described in [4].

The protocol associates a timestamp with each message and delivers messages according to the order defined by their timestamps. Each group is equipped with a clock with which it can generate timestamps. A timestamp is a pair (clock value, group identity). The timestamp associated with a message m is denoted $m.t$. The protocol proceeds in four consecutive steps. Let m be a message that has been TO-multicast to the set of groups defined by $m.dest = \{g_0, g_1, \ldots \}$.

Step 1. Each group $g_e \in m.dest$ defines a timestamp for m (denoted $m.ts_e$). This timestamp is g_e’s proposal to be the definitive timestamp for m.

Step 2. Each group of $m.dest$ proposes its timestamp for m to the other groups of $m.dest$. Then each group computes the greatest timestamp proposed for m. Let $m.ts$ be this greatest timestamp: it is the definitive timestamp associated with m. (Note that, by construction, it is the same for all groups.)

Step 3. Each group updates its clock according to the clock value of $m.ts$.

Step 4. Finally, a group delivers m when $m.ts$ is the lowest timestamp among all the timestamped messages it has not yet delivered (be these timestamps proposals or definitive timestamps).

To implement the previous principle, each process p_i of a group g_i is endowed with (1) a local clock variable, $clock_i$ initialized to 0, that represents its view of the clock of the group g_i, and with (2) a queue Rec_i initially empty. When a message m sent to g_e is received by a process $p_i \in g_e$, it is stored at the tail of Rec_i. Message m remains in this queue until it is TO-delivered. Its progress towards TO-delivery is expressed by a linear automaton. More precisely, each message has a field $m.state$ whose meaning is the following:

- $m.state = q_0$ means that m has not yet been assigned a timestamp (initially, for any message m, $m.state = q_0$).
- $m.state = q_1$ means that m has been assigned a timestamp by the group g_e ($m.ts_e$).
- $m.state = q_2$ means that m has its final timestamp ($m.ts$).
- $m.state = q_3$ means that the clock of g_e (for p_i, this clock is locally represented by $clock_i$) has been resynchronized with respect to the clock value of the definitive timestamp of m (namely, $m.ts$).

4.2 Description of the Protocol

Implementation of $TO\text{-multicast}(m)$

The implementation of $TO\text{-multicast}(m)$ is easy. When a process p invokes $TO\text{-multicast}(m)$ it issues a call to the uniform reliable multicast primitive, i.e., it calls $R\text{-multicast}(m)$. As indicated in Section 3.1 this ensures that if p_i is correct or if a process (belonging to a group $g_e \in m.dest$) R-delivers m, then all correct processes that belong to groups of $m.dest$ eventually R-deliver m.

Remark. Note that in the implementation of $R\text{-multicast}(m)$, when a process receives a message for the first time, it needs to forward this message (1) to all processes of its group and (2) only to a majority of processes of each other group of $m.dest$. As by assumption, in each group, there is at least one correct process in any majority, the termination property of uniform reliable multicast is ensured. *End of remark*

This shows that the implementation of the $TO\text{-multicast}$ primitive is simple. However, as we will see in the next parts of this section, the implementation of the $TO\text{-deliver}$ primitive is far from

\(^4\)This means that the consensus problem can not be solved in runs (of asynchronous distributed systems) in which these two properties are not satisfied. Furthermore, while the completeness property can always be realized by using timeouts, it is important to note that the accuracy property can only be approximated in purely asynchronous distributed systems (otherwise, this would contradict the Fisher-Lynch-Paterson’s impossibility result!).

\(^5\)Or, equivalently, for systems equipped with perfect failure detectors.
being trivial: we have to build the Global Total Order property that distinguishes uniform reliable multicast from TO-multicast.

Structure of a process.
In addition to the execution of the application program it is associated with, each process p_i of a group g_x is made up of several threads. A thread T_i^{con} is associated with each message m R-delivered but not TO-delivered to p_i. Moreover, a permanent thread T_i^{con} ensures that $clock_i$ (the local clock of p_i) provides p_i with a correct implementation of the clock of the group g_x. Its role is fundamental. It guarantees that each process p_i of a group g_x provides the same timestamps to the same messages, and consequently ensures that all processes of a group g_x offer to the other groups the same view of g_x’s clock. The next two paragraphs describe these two types of threads that (in addition to the local user program) compose a process p_i.

To ease explanations, we assume that, at any time, among the set of threads T_i^{con} and the thread T_i^{exec} of p_i, at most one of them is active. Moreover, except when it executes a wait until statement, a thread executes atomically (it cannot be interrupted). This ensures local consistency of the local variable Rec_i ($clock_i$ is accessed only by T_i^{con}).

![Figure 1. Local Thread T_i^{con} Associated with the Processing of a Message m](image)

Thread associated with the processing of a message.
When a message m is R-delivered at a process p_i belonging to a group g_x, this process creates and associates with m a new thread whose behavior is defined in Figure 1. This thread T_i^{con} first initializes $m\.state$ to g_0 and adds m to the tail of Rec_i (line 1.1). Then, as indicated previously, T_i^{con} progresses towards the TO-delivery of m by executing the four steps mentioned in Section 4.1. This progress of m is “measured” by its field $m\.state$ (which takes the successive values q_0, q_1, q_2 and finally q_3).

Step 1. (Line 1.2). T_i^{con} first blocks until m has been assigned a group timestamp $m\.ts$ (g_x is the group to which the concerned process p_i belongs: $p_i \in g_x$ and $g_x \in m\.dest$) (line 1.2). This timestamp is computed by the set of threads T_i^{con} of processes $\in g_x$, as described in the next paragraph (Figure 2). T_i^{con} knows m has got this timestamp when it discovers that $m\.state$ has taken the value q_1. (Recall that a timestamp is a pair (clock value, group identity).)

Step 2. (Lines 1.3-1.5). Then, T_i^{con} sends this timestamp $m\.ts$ to all processes belonging to groups appearing in $m\.dest$ (line 1.3). $m\.ts$ is g_x’s proposal to compute the definitive timestamp that will be assigned to m. T_i^{con} then waits until it has received a timestamp proposal $m\.ts'$ from each group g_y of $m\.dest$ (line 1.4): this is done as soon as it has received a timestamp from at least one process of each group g_y of $m\.dest$. After having received all these values, T_i^{con} computes the definitive timestamp for m (denoted $m\.ts$): it is the greatest timestamp proposed for m by its destination groups. As soon as m has got its final timestamp, T_i^{con} makes its state evolve to q_3 (line 1.5).

Step 3. (Line 1.6). Then, T_i^{con} waits until the clock of the group g_x (locally represented by $clock_i$) has been resynchronized to $max(clock_i, clock value of m\.ts)$. This resynchronization is not managed by T_i^{con}: it is done by the thread T_i^{con} described in Figure 2. T_i^{con} learns this clock synchronization due to m is done by discovering that $m\.state = q_3$ (line 1.6). Note that, as soon as $m\.state$ is set to q_3, all messages m' in Rec_i such that $m'\.state = q_3$ will get a timestamp greater than $m\.ts$.

Step 4. (Lines 1.7-1.8). When m has the lowest timestamp with respect to all the messages m' in Rec_i such that $m'\.state = q_1$, q_2 or q_3, then T_i^{con} TO-delivers m (line 1.8). Moreover the thread T_i^{con} is killed.

Remark. If a message m is TO-Multicast to a single group g_y, then the thread T_i^{con} can be simplified. The lines 1.3-1.6 can be replaced by the single statement $m\.state \leftarrow q_3$: as m is addressed only to g_y it can skip steps 2 and 3 as these steps are due to the multiplicity of destination groups. Moreover, in the extreme case where the system is composed of a single group, additional simplifications can be done: the message state q_3 can be suppressed and the message states q_1 and q_2 can be merged. These simplifications result in a TO-broadcast protocol whose behavior is close to the consensus-based TO-broadcast protocol proposed by Chandra and Toueg in [4]. End of remark

Thread associated with the management of a group clock.
The set of threads T_i^{con} of processes $p_i \in g_x$ play a crucial role with respect to the group g_x. They implement the clock of the group g_x. This clock, represented by $clock_i$ at p_i, increases as a Lamport’s clock [15] and is used by g_x to define a timestamp $(m\.ts')$ for each message R-delivered to the group g_x. (Note that T_i^{con} does not access $clock_i$.)

This thread is described in Figure 2. Its core is a consensus protocol executed within g_x. Let us consider the situation where each non-crashed process $p_i \in g_x$ has been R-delivered one or several messages. So, at each p_i we have ($\exists m \in Rec_i : m\.state = q_0$).

In this situation, the thread T_i^{con} of any non-crashed process $p_i \in g_x$, increases its local variable $clock_i$ (line 2.3) -let k be the new value of $clock_i$- and launches an uniform consensus within g_x by proposing a message (line 2.4). All executions of consensus within g_x are identified by a clock value. So, as in [4], within g_x the consensus execution numbered k is tagged with the clock value k and the corresponding primitives are propose($k, -$) and decide($k, -$) (line 2.4). The aim of the consensus execution numbered k is either (1) to associate a timestamp (k, x) (where x is the identity of g_x) with some message m R-delivered to g_x (“timestamping consensus”) or (2) to entail a resynchronization of the clock of g_x (“resynchronization consensus”).

Let us consider both cases. T_i^{con} has proposed m to the consensus execution numbered k and the result of this consensus is some message m' (line 2.4). According to the state of the message m', that is output by the consensus numbered k, this consensus is either a "timestamping consensus" (when $m'\.state = q_0$, line
acts as if it had used a single clock to timestamp m and k. When such a message clock equal to definitive timestamp is a message consensus: just after the consensus numbered resychronized, is to do the resynchronization immediately after A way to ensure all local clocks have the same value before being clocks of a group will take the same sequence of values.

Figure 2. Local Thread \(T_{i}^{cons} \) Implementing the Clock of Group \(g_{i} \).

(2.6) or a "resynchronization consensus" (when \(m'.state = q_{2} \), line 2.7).

- We first consider case (1): \(m'.state = q_{0} \). In this case, \(m' \) has been proposed by some process of \(g_{e} \) to get a group timestamp \(m'.ts' \). So, \(m' \) gets one, namely \(k, x \), and \(m'.state \) is updated to \(q_{1} \) (line 2.6). Note that from the Uniform Agreement property of consensus, the pair \((k, x) \) is consistently considered as the single value of \(m'.ts' \) by every non-crashed process \(p_{i} \in g_{e} \). The group acts as if it had used a single clock to timestamp \(m'.ts \). This is the case where the consensus gives a group timestamp to a message. That is why we call it "timestamping consensus".

- Let us consider case (2): \(m'.state = q_{2} \). As we have seen is Section 4.1, a group \(g_{e} \) has to resynchronize its clock (perceived by \(p_{j} \) as clock \(k_{j} \)) after it has learnt that a message \(m \) has got its definitive timestamp \(m.ts \). From the point of view of \(p_{j} \), this resynchronization is expressed as clock \(k_{j} \leftarrow \max (\text{clock}_{k}, \text{clock value of } m.ts) \). To ensure all clock \(k_{j} \) variables consistently implement the clock of \(g_{e} \), they must take the same sequence of values: if a local clock progresses from \(k \) to \(k + 1 \), the other local clocks of \(g_{e} \) have to progress from \(k \) to \(k + 1 \); if a clock jumps from \(k \) to \(k' \), the other clock variables must also jump from \(k \) to \(k' \). In other words, if local clocks of processes of \(g_{e} \) are equal before being resynchronized (let \(k \) be their value), the resynchronization will entail the same jump for all of them, namely, they will jump from \(k \) to \(\max (k, \text{clock value of } m.ts) \). And, consequently, all local clocks of a group will take the same sequence of values.

A way to ensure all local clocks have the same value before being resynchronized, is to do the resynchronization immediately after a consensus: just after the consensus numbered \(k \), all clocks are equal to \(k \). That is why, within a group, processes propose to consensus messages that require this group to resynchronize its clocks, i.e., they propose messages \(m' \) such that \(m'.state = q_{2} \) (lines 2.1 and 2.4). When such a message \(m' \) with \(m'.state = q_{2} \) is output by consensus numbered \(k \), (i.e., \(T_{i}^{cons} \) executes \(\text{Decide}(k, m') \) at line 2.4), \(T_{i}^{cons} \) does the corresponding clock resynchronization (line 2.7). That is why when the result of a consensus execution is a message \(m' \) such that \(m'.state = q_{2} \), the consensus is called "resynchronization consensus".

To sum up, let us consider a message \(m \) proposed by \(T_{i}^{cons} \) to consensus numbered \(k \).

- If \(m.state = q_{0} \), then \(T_{i}^{cons} \) proposes \(m \) for it to obtain a group timestamp. Message \(m \) will get this timestamp when it will be output by some consensus numbered \(k' \). The clock value of \(m.ts' \) will be the number \(k' \) ("timestamping consensus").

- If \(m.state = q_{2} \), then \(T_{i}^{cons} \) proposes \(m \) for all the clocks of the group resynchronize consistently with respect to the clock value of the definitive timestamp \(m.ts \). This resynchronization occurs when \(m \) is output by a consensus ("resynchronization consensus").

5 Correctness Proof

A simple examination of the protocol shows that it satisfies the Locality property and the Minimality property. Due to space limitation the proof that the protocol satisfies the properties stated in Section 2.2 is omitted. The reader interested in the proof may consult [7].

6 Discussion

6.1 Reducing the Consensus Cost

When considering the proposed protocol, the cost of TO-multicasting a message is the addition of the cost of uniform reliable multicast, plus the cost of consensus, plus the cost of step 2 (the exchange of group timestamps to compute the greatest one). Here, we shows how this cost can be reduced.

In Section 4, the proposal of a thread \(T_{i}^{cons} \) to a consensus execution is composed of a single message. Actually, it is possible to modify this protocol in order that each thread \(T_{i}^{cons} \) is be allowed to propose several messages to a given consensus. Now, the size of a proposal is not reduced to a single message, it may include a set of messages \(MSG = \{m_{1}, \ldots, m_{p}\} \) such that some of them are in state \(q_{0} \) and others are in state \(q_{2} \). So, within a group \(g_{e} \), the result of the consensus numbered \(k \) is a set of messages \(MSG' = \{m_{1}', m_{2}', \ldots, m_{q}'\} \). Each message \(m \) is required to carry its identity \(m.id \), and message identities must be such that two distinct messages must have distinct but comparable identities.

When a thread \(T_{i}^{cons} \) executes \(\text{Decide}(k, MSG') \) with \(MSG' = \{m_{1}', m_{2}', \ldots, m_{q}'\} \), it has to sequentially do the following actions:

- Let \(MSG_{0} = \{m' \in MSG : m'.state = q_{0}\} \). If \(MSG_{0} \neq \emptyset \), then \(\forall m' \in MSG_{0}, T_{i}^{cons} \) associates with \(m' \) the following group timestamp: \((k, x, m'.id) \). So, a timestamp is now made of three fields: a clock value, a group identity and the message identity. As several messages can now have the same first two timestamp fields, it is necessary to add the third field in order different messages have different timestamps. Note that these timestamps are lexicographically ordered, and consequently they define a total order.

As it is done in the total order broadcast protocol proposed in [4].

Message identities of the form (sequence number, sender identity) have the required properties.
increased in the timestamp size. The cost of the original protocol can be reduced at the price of a small amount of communication. Hence, the protocol can considerably reduce the number of consensus executions. (This is due to the fact that clock resynchronizations are only required to ensure the liveness property -termination- of the protocol.)

When applied within each group, these modifications can considerably reduce the number of consensus executions. Hence, the cost of the original protocol can be reduced at the price of a small increase in the timestamp size.

6.2 Crash/Recovery Model

In a crash/recovery model, a process can crash and later recover. When it crashes, a process loses its context. To cope with this context loss, a process has to log critical data into stable storage. In this model, a correct process is a process that eventually does not crash anymore. Moreover, messages arrived at a destination process while it was crashed are lost. A consensus protocol suited to such a fault model is described in [14].

The protocol proposed in Section 4 works in a crash/recovery model provided that: (1) each group be provided with a consensus protocol suited to this fault model and (2) for each message m, the thread T /m does not block during step 2, i.e., \(\forall g, g \in m\.dest, \) each correct process of \(g \) receives the timestamp \(m\.ts^k \).

Moreover, let us note that the protocol still works if some groups consider the crash/no recovery model while the others consider the crash/recovery model. This is a direct consequence of the two points: (1) the reliability of each group and (2) the Locality property of the multicast protocol.

7 Conclusion

This paper addressed the Total Order Multicast to Multiple Groups problem in the context of asynchronous distributed systems in which processes may suffer crash failures. “Multicast to Multiple Groups” means that a message is sent to a subset of the process groups comprising the system, distinct messages possibly having different destination groups. “Total Order” means that all message deliveries must be totally ordered.

A protocol for such a multicast primitive has been proposed. This protocol uses two underlying building blocks, namely, Uniform Reliable Multicast and Uniform Consensus. As we have seen, this protocol enjoys two noteworthy properties: Minimality and Locality. Minimality means that only the sender of a message and processes of its destination groups do participate in its multicast. Locality means that any consensus execution is restricted to processes of a single group. These properties are particularly useful when one is interested in using a total order multicast primitive in large scale distributed systems. Lastly, it has been shown how the consensus cost of the protocol can be reduced.

References