Basic relaxation schemes

- Relaxation methods: Jacobi, Gauss-Seidel, SOR
- Basic convergence results
- Optimal relaxation parameter for SOR
- See Chapter 4 of text for details.

Gauss-Seidel iteration for solving $Ax = b$:

- Corrects j-th component of current approximate solution, to zero the $j\text{-th}$ component of residual for $j = 1, 2, \cdots, n$.

Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

$$x^{(k+1)} = Mx^{(k)} + f$$

Jacobi:

$$M_{Jac} = D^{-1}(E + F) = I - D^{-1}A$$

Gauss-Seidel:

$$M_{GS} = (D - E)^{-1}F = I - (D - E)^{-1}A$$

Successive Overrelaxation (SOR):

$$M_{SOR} = (D - \omega E)^{-1}(\omega F + (1 - \omega)D) = I - (\omega^{-1}D - E)^{-1}A$$

Symmetric Successive Overrelaxation (SSOR):

$$M_{SSOR} = I - \omega(2 - \omega)(D - \omega F)^{-1}D(D - \omega E)^{-1}A$$
General convergence result

Consider the iteration: \(x^{(k+1)} = Gx^{(k)} + f \)

1. Assume that \(\rho(G) < 1 \). Then \(I - G \) is non-singular and \(G \) has a fixed point. Iteration converges to a fixed point for any \(f \) and \(x^{(0)} \).

2. If iteration converges for any \(f \) and \(x^{(0)} \) then \(\rho(G) < 1 \).

Example: Richardson's iteration

\[x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)}) \]

Assume \(\Lambda(A) \subset \mathbb{R} \). When does the iteration converge?

A few well-known results

- Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that
 \[|a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, \ldots, n \]

- SOR converges for \(0 < \omega < 2 \) for SPD matrices

- The optimal \(\omega \) is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.

An observation

A matrix has property \(A \) if it can be (symmetrically) permuted into a \(2 \times 2 \) block matrix whose diagonal blocks are diagonal.

\[PAP^T = \begin{bmatrix} D_1 & E \\ E^T & D_2 \end{bmatrix} \]

- Let \(A \) be a matrix which has property \(A \). Then the eigenvalues \(\lambda \) of the SOR iteration matrix and the eigenvalues \(\mu \) of the Jacobi iteration matrix are related by
 \[(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2 \]

- The optimal \(\omega \) for matrices with property \(A \) is given by
 \[\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho(B)^2}} \]

where \(B \) is the Jacobi iteration matrix.

- The iteration \(x^{(k+1)} = Mx^{(k)} + f \) is attempting to solve \((I - M)x = f \). Since \(M \) is of the form \(M = I - P^{-1}A \) this system can be rewritten as
 \[P^{-1}Ax = P^{-1}b \]

where for SSOR, we have

\[P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F) \]

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation iter. \iff Preconditioned Fixed Point Iter.