Convergence theory

- Background: Best uniform approximation;
- Chebyshev polynomials;
- Analysis of the CG algorithm;
- Analysis in the non-Hermitian case (short)

Background: Best uniform approximation

We seek a function \(\phi \) (e.g., polynomial) which deviates as little as possible from \(f \) in the sense of the \(\| . \|_\infty \) -norm, i.e., we seek the

\[
\min_{\phi} \max_{t \in [a,b]} |f(t) - \phi(t)| = \| f - \phi \|_\infty
\]

- Solution is the "best uniform approximation to \(f \"
- Important case: \(\phi \) is a polynomial of degree \(\leq n \)
- In this case \(\phi \) belongs to \(\mathbb{P}_n \)

The Min-Max Problem:

\[
\rho_n(f) = \min_{p \in \mathbb{P}_n} \max_{x \in [a,b]} |f(t) - p(t)|
\]

- If \(f \) is continuous, best approximation to \(f \) on \([a,b] \) by polynomials of degree \(\leq n \) exists and is unique

Question: How to find the best polynomial?

Answer: Chebyshev's equi-oscillation theorem.

Chebyshev equi-oscillation theorem: \(p_n \) is the best uniform approximation to \(f \) in \([a,b] \) if and only if there are \(n + 2 \) points \(t_0 < t_1 < \ldots < t_{n+1} \) in \([a,b] \) such that

\[
f(t_j) - p_n(t_j) = c(-1)^j\|f - p_n\|_\infty \text{ with } c = \pm 1
\]

\([p_n \ 'equi-oscillates' \ n + 2 \ times \ around \ f \]
Application: Chebyshev polynomials

Question: Among all monic polynomials of degree \(n + 1 \) which one minimizes the infinity norm? Problem:

\[
\min ||t^{n+1} - a_n t^n - a_{n-1} t^{n-1} - \cdots - a_0||_\infty
\]

Reformulation: Find the best uniform approximation to \(t^{n+1} \) by polynomials \(p \) of degree \(\leq n \).

- \(t^{n+1} - p(t) \) should be a polynomial of degree \(n + 1 \) which equi-oscillates \(n + 2 \) times.

Definition: Chebyshev polynomials:

\[
C_k(t) = \cos(k \cos^{-1} t) \quad \text{for} \quad k = 0, 1, \ldots, \quad t \in [-1, 1]
\]

Observation: \(C_k \) is a polynomial of degree \(k \), because:

- the \(C_k \)'s satisfy the three-term recurrence:

\[
C_{k+1}(t) = 2x C_k(t) - C_{k-1}(t)
\]

with \(C_0(t) = 1, C_1(t) = t \).

- Show the above recurrence relation
- Compute \(C_2, C_3, \ldots, C_8 \)
- Show that for \(|x| > 1 \) we have

\[
C_k(t) = \frac{1}{2^n} C_{n+1}(1 + 2 \eta)
\]

Convergence Theory for CG

- Approximation of the form \(x = x_0 + p_{m-1}(A)r_0 \) with \(x_0 = \) initial guess, \(r_0 = b - Ax_0 \);
- Recall property: \(x_m \) minimizes \(||x - x_s||_A \) over \(x_0 + K_m \)

Consequence: Standard result

Let \(x_m = m \)-th CG iterate, \(x_s = \) exact solution and

\[
\eta = \frac{\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}}
\]

Then:

\[
||x_s - x_0||_A \leq \frac{||x_s - x_0||_A}{C_m(1 + 2\eta)}
\]

where \(C_m = \) Chebyshev polynomial of degree \(m \).
Alternative expression. From $C_k = ch(kch^{-1}(t))$:

$$C_m(t) = \frac{1}{2} \left[(t + \sqrt{t^2 - 1})^m + (t + \sqrt{t^2 - 1})^{-m} \right] \geq \frac{1}{2} \left(t + \sqrt{t^2 - 1} \right)^m.$$

Then:

$$C_m(1 + 2\eta) \geq \frac{1}{2} \left(1 + 2\eta + \sqrt{(1 + 2\eta)^2 - 1} \right)^m \geq \frac{1}{2} \left(1 + 2\eta + 2\eta(\eta + 1) \right)^m.$$

Next notice that:

$$1 + 2\eta + 2\sqrt{\eta(\eta + 1)} = \left(\sqrt{\eta} + \sqrt{\eta + 1} \right)^2 = \left(\frac{\sqrt{\lambda_{\min}} + \sqrt{\lambda_{\max}}}{\lambda_{\max} - \lambda_{\min}} \right)^2.$$

Substituting this in previous result yields

$$\|x_0 - x_m\|_A \leq \frac{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max} - \lambda_{\min}}} \|x_0 - x_0\|_A.$$

Compare with steepest descent!

Theory for Nonhermitian case

- Much more difficult!
- No convincing results on ‘global convergence’ for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc..
- Can get a general a-priori – a-posteriori error bound

Convergence results for nonsymmetric case

- Methods based on minimum residual better understood.
- If $(A + A^T)$ is positive definite ($(Ax, x) > 0 \ \forall x \neq 0$), all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.

MR-type methods: if $A = X\Lambda X^{-1}$, Λ diagonal, then

$$\|b - Ax_m\|_2 \leq \text{Cond}_2(X) \min_{p \in \mathcal{P}_{m-1}, p(0) = 1} \max_{\lambda \in \Lambda(A)} |p(\lambda)|$$

(\mathcal{P}_{m-1} ≡ set of polynomials of degree $\leq m - 1$, $\Lambda(A)$ ≡ spectrum of A)