REORDERINGS FOR FILL-REDUCTION

GENERAL SPARSE MATRICES

- Minimal degree ordering
- Nested Dissection (ND) ordering
- Complexity of ND for model problems
Two broad types of orderings used:

- Minimal degree ordering + many variations
- Nested dissection ordering + many variations

Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node \(v \) of smallest degree. After eliminating node \(v \), update degrees and repeat.
Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row j

\[
\text{Cost}(j) = (nz_c(j) - 1)(nz_r(j) - 1)
\]

where $nz_c(j) =$ number of nonzero elements in column j of ‘active’ matrix, $nz_r(j) =$ number of nonzero elements in row j of ‘active’ matrix.

- Heuristic: fill-in at step j is $\leq \text{cost}(j)$
- Strategy: select pivot with minimal cost.
- Local, greedy algorithm
- Good results in practice.
Many improvements made over the years

<table>
<thead>
<tr>
<th>Min. Deg. Algorithm</th>
<th>Storage (words)</th>
<th>Order. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final min. degree</td>
<td>1,181 K</td>
<td>43.90</td>
</tr>
<tr>
<td>Above w/o multiple elimn.</td>
<td>1,375 K</td>
<td>57.38</td>
</tr>
<tr>
<td>Above w/o elimn. absorption</td>
<td>1,375 K</td>
<td>56.00</td>
</tr>
<tr>
<td>Above w/o incompl. deg. update</td>
<td>1,375 K</td>
<td>83.26</td>
</tr>
<tr>
<td>Above w/o indistiguishible nodes</td>
<td>1,308 K</td>
<td>183.26</td>
</tr>
<tr>
<td>Above w/o mass-elimination</td>
<td>1,308 K</td>
<td>2289.44</td>
</tr>
</tbody>
</table>

▷ Results for a 180 × 180 9-point mesh problem
Since this article, many important developments took place.

In particular the idea of “Approximate Min. Degree” and “Approximate Min. Fill”, see

First Idea: Use quotient graphs

* Avoids elimination graphs which are not economical
* Elimination creates cliques
* Represent each clique by a node termed an *element* (recall FEM methods)
* No need to create fill-edges and elimination graph
* Still expensive: updating the degrees
Second idea: Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of them simultaneously –

* Specifically eliminate independent set of nodes with same degree.

Third idea: Approximate Minimum degree

* Degree updates are expensive –

* Goal: To save time.

* Approach: only compute an approximation (upper bound) to degrees.

* Details are complicated and can be found in Tim Davis’ book

8-7 – order2
Nested Dissection Reordering (Alan George)

- Computer science ‘Divide-and-Conquer’ strategy.
- Best illustration: PDE finite difference grid.
- Easily described by using recursivity and by exploiting ‘separators’: ‘separate’ the graph in three parts, two of which have no coupling between them. The 3rd set (‘the separator’) has couplings with vertices from both of the first 2 sets.
- Key idea: dissect the graph; take the subgraphs and dissect them recursively.
- Nodes of separators always labeled last after those of the parents.
For regular $n \times n$ meshes, can show: fill-in is of order $n^2 \log n$ and computational cost of factorization is $O(n^3)$

How does this compare with a standard band solver?
Nested dissection for a small mesh
Nested dissection: cost for a regular mesh

- In 2-D consider an $n \times n$ problem, $N = n^2$
- In 3-D consider an $n \times n \times n$ problem, $N = n^3$

<table>
<thead>
<tr>
<th></th>
<th>2-D</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>space (fill)</td>
<td>$O(N \log N)$</td>
<td>$O(N^{4/3})$</td>
</tr>
<tr>
<td>time (flops)</td>
<td>$O(N^{3/2})$</td>
<td>$O(N^2)$</td>
</tr>
</tbody>
</table>

- Significant difference in complexity between 2-D and 3-D
Nested dissection and separators

- Nested dissection methods depend on finding a good graph separator: \(V = T_1 \cup UT_2 \cup S \) such that the removal of \(S \) leaves \(T_1 \) and \(T_2 \) disconnected.

- Want: \(S \) small and \(T_1 \) and \(T_2 \) of about the same size.

- Simplest version of the graph partitioning problem.

A theoretical result:

If \(G \) is a planar graph with \(N \) vertices, then there is a separator \(S \) of size \(\leq \sqrt{N} \) such that \(|T_1| \leq 2N/3 \) and \(|T_2| \leq 2N/3 \).

In other words “Planar graphs have \(O(\sqrt{N}) \) separators”

- Many techniques for finding separators: Spectral, iterative swapping (K-L), multilevel (Metis), BFS, ...
The 2-D model problem

- 2-D finite difference mesh with N vertices.

Theorem:
With natural ordering, resulting fill-in is $\Theta(N^{3/2})$.

Theorem:
With any ordering, resulting fill-in is $\Omega(N \log N)$.

Theorem:
With nested dissection ordering, resulting fill-in is $O(N \log N)$.

Ordering techniques in practice

- In practice: Nested dissection (+ variants) is preferred for parallel processing

- Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/

- Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.