An Introduction to H-matrices

Zachary Bookey

March 27, 2017
When dealing with a system of n equations the optimal efficiency is $O(n)$. With dense matrices with n^2 entries $O(n^2)$ seems unavoidable.

This paper proposes using a data sparse representation of a matrix.

This representation allows for cheap operations such as:

- Matrix addition
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Matrix inversion
Partitioning a Vector

Definitions

Space of vectors $a = (a_i)_{i \in I}$

I is finite index set. e.g., $I = \{1, \ldots, n\}$

Partition $P = \{I_j : 1 \leq j \leq k\}$

$I = \bigcup_{j=1}^{k} I_j$

Example

$a = \{2, 1, 4, 0\}$

$I = \{1, 2, 3, 4\}$

Partition into equal blocks.

$I_1 = \{1, 2\}, I_2 = \{3, 4\}$

Block 1: $\{2, 1\}$ Block 2: $\{4, 0\}$
Tree Terminology

T is a tree.

- $S(t) := \{s \in T : s \text{ is son of } t\}$ for $t \in T$
- $L(T) := \{t \in T : S(t) = \emptyset\}$
- The root of T is the unique vertex without a parent
- $S^*(t) := \{s \in T : \text{ there is a directed path from } t \text{ to } s\}$
T is an H-tree of an index set I if the following hold:

1. All vertices $t \in T$ are subsets of I
2. $I \in T$
3. $\forall t \in T, |S(t)| \neq 1$
4. If $t \in T$ and $t \notin L(T)$ then $S(t)$ contains disjoint subsets of I and t is the union of its sons.

$$t = \bigcup_{s \in S(t)} s$$
Important properties of the H-tree

1. $s, t \in T$ with $s \neq t$ Then exactly one of the following is true:
 - $s \subset t$. Then $s \in S^*(t) \setminus \{t\}$
 - $t \subset s$. Then $t \in S^*(s) \setminus \{s\}$
 - $s \cap t = \emptyset$. Then there is a unique smallest $r \in T$ with $s, t \in S^*(r)$

2. For any $t \in T$, $S^*(t)$ is a subtree of T satisfying requirements 1, 3, and 4 for being a H-tree.

3. For any $t \in T$,

$$t = \bigcup_{s \in L(S^*(t))} s$$
An example of an H-tree over an index set I
\{1, 2, 3, 4, 5, 6, 7, 8\}
The Matrix Case

With a block partitioning P of I, the traditional partitioning is:

$$P_2 := P \times P = \{ I_i \times I_j : I_i, I_j \in P \}$$

Figure of a sample tensor partition

![Sample tensor partition diagram]
A Non-Tensor Partition

Idea

Use an H-tree to recursively define a partition $P_2 = P_2(I, T)$ of $I \times I$

Recursion depends on the depth of the H-tree.

- Depth $= 0$, $P_2(I, T) := \{I \times I\}$
- Depth $= 1$, $P_2(I, T) := \{I_1 \times I_1, I_1 \times I_2, I_2 \times I_1, I_2 \times I_2\}$
- Depth > 1, $P_2(I, T) := P_2(I_1, T_1) \cup \{I_1 \times I_2\} \cup \{I_2 \times I_1\} \cup P_2(I_2, T_2)$
$p = 0: \quad , \quad p = 1: \quad , \quad p = 2: \quad , \quad p = 3: \quad$
Another Recursive Definition

A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \text{ with } \frac{n}{2} \times \frac{n}{2} H\text{-Matrices } A_{ii}

Definition

\[M_{H,k}(I \times I, P_2) := \{ M : \text{each block } M^b, b \in P_2, \text{satisfies } \text{rank}(M^b) \leq k \} \]

A matrix A is an Rk-matrix if \(\text{rank}(A) \leq k \).
Contents

1 Introduction

2 Partitioning and H-Trees

3 Rk-Matrices

4 H-Matrices

5 Another Example
Any $n \times m$ matrix A of rank ≤ 1 can be written of the form:

$$A = a \ast b^H$$ (notation: $A = [a, b]$)

Only need to store the vectors a and b. $O(n + m)$ storage
Properties of R1-Matrices

- The amount of work for matrix-vector multiplication $Ac(c \in K^m)$ is $2m - 1$ operations to obtain $\alpha \star a$ and $2m + n - 1$ if $\alpha \star a$ is performed explicitly.
- $A = [a, b]$ then also $A^H = [b, a]$.
- R1-Matrices have left and right ideal properties.
 - $B \star A$ with $A = [a, b]$ requires only $B \star a$ and $B \star A = [B \star a, b]$.
 - If A and B are R1-Matrices $A \star B$ needs only one scalar product.
- The evaluation of any entry A_{ij} requires exactly one operation.
- The evaluation of a complete row or column requires either m or n operations.
In general the sum of two R1-matrices is not an R1-matrix.
To get an approximate sum that is an R1-matrix we use the SVD

\[A = U \times D \times V \]

Let \(D' \) be a version of \(D \) with only the \(k' \) largest singular values.
\(A' = U \times D' \times V \) has rank \(k' \) and \(\| A - A' \|_F \) is minimized.

Costs \(9(n + m) + O(1) \) operations.
These properties hold when we extend to Rk-Matrices:

- Storage for $n \times m$ Rk-matrix is $O(n + m)$
- Product $A \star B$ requires k^2 scalar products
- $A +_{Rk} B$ requires solving a $k \times k$ eigenvalue problem with an additional $O(1)$
H-Partition

Each block is filled with an Rk matrix
Complexity of the H-Matrix

Storage

$n \times n$ H-matrix where $n = 2^p$ requires $(2 \log_2 n + 1)n$

$+_R 1$

The $R1$ addition of two H-matrices or an $R1$-matrix and H-matrix is $18n \log_2 n + O(n)$
Complexity of the H-Matrix

Matrix-Vector Multiplication

The multiplication of an H-matrix and a general vector is $4n \log_2 n - n + 2$

Matrix-Matrix Multiplication

- Two H-matrices: $9n \log_2^2 n + O(n \log_2 n)$
- H-matrix and an R1-matrix: $4n \log_2 n - n + 2$
- Two R1-matrices: $3n - 1$
Complexity of the H-Matrix

Approximate Matrix-Inversion

The approximate matrix inversion takes: $\frac{29}{2} n \log_2^2 n + O(n \log_2 n)$

LU-Decomposition

LU-Decomposition takes: $6 n \log_2^2 n + O(n \log_2 n)$
Properties of the H-Matrix

Most operations on H-matrices are approximations.

- Matrix-Vector multiplication Ax where A is an H-matrix is exact.
- If A is an H-matrix and B is an Rk matrix, then AB and BA are again Rk-matrices.
Properties of the \(H \)-Matrix

The field of \(H \)-matrices with rank \(k \) blocks are invariant with respect to diagonal scaling.

Banded Matrices

Tridiagonal matrices and their inverses both belong to the field of \(H \)-matrices with the partition described earlier. Similarly band matrices with \(2k \) off diagonals are belong to the field.
A Second Example

The previous partition may not be dense enough around the diagonal for practical use.

N_k-Matrices

Neighborhood matrices

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \text{ with } \frac{n}{2} \times \frac{n}{2} \text{ Rk matrices } A_{11}, A_{12}, A_{22} \text{ and } A_{21} \in N_k
\]
A Second Example

\[A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \text{ with } A_{11}, A_{22} \in H-\text{Matrices}, A_{12} \in N_k, A_{21} \in N_k^T \]
A Second Example

Similar complexity to the original example.

- \(N_{\text{block}} = 9n - 6 \log_2 n - 8 \)
- \(N_{\text{storage}} = 6n \log_2 n + O(n) \)
- Addition: \(O(n \log_2 n) \)
- Matrix-vector: \(11n \log_2 n + O(n) \)
- Matrix-matrix: \(O(n \log^2 n) \)
- Inversion: \(O(n \log^2 n) \)
Wrap up

- Approximation to dense matrices
- Uses recursive partitioning defined by T-partitions
- Most operations are almost linear time
- Applications:
 - Approximate integral operators through discretization