
CSci 1113, Spring 2018
Lab Exercise 7 (Week 8): Strings

Strings

Representing textual information using sequences of characters is common throughout computing. Names,
sentences, text, prompts, etc. all need a proper representation. We've been using string literals since the first
week of the course when we discovered how to write "Hello World" to the computer display.

In addition to representing non-numeric and qualitative information, string objects are frequently used in en-
gineering and scientific applications to input and process large text files containing measurements, experi-
mental test data, and so forth.

Comma Separated Value files (CSV)
One common format for representing large data files is the "comma separated value" (CSV) format. For ex-
ample, if you have data in an Excel spreadsheet, it is a simple matter to output it to a file in CSV format. The
CSV format is simplicity itself: each data element is stored as a text string separated from the succeeding
value by a single comma (' , '). If the file data is tabular (rows and columns), the rows are separated using a
single newline character ('\n'). This makes it possible to use a standard text-editor to view the contents of
any CSV formatted file in order to determine its organization.

Getline()
Processing the data in a CSV formatted file requires that you identify and separate the individual values in
each row. Individual rows are read using the getline(stream, string) function which returns the entire
comma-separated row as a C++ string object. The row string must then be parsed by your program, separat-
ing values from the comma separators. This requires some fluency with manipulating strings which we will
explore in this Lab Exercise.

Converting Strings to Values
The "values" that are obtained from each CSV string (row) are character strings. Before they can be used in a
computation, they must be converted to numeric values (floating-point or integer). There are many clever
ways to do this in C++, but the simplest method is to use the functions atof and/or atoi, found in the stan-
dard C++ library: <cstdlib>. These functions both take a c_string as an argument and return a double or
int respectively. Recall that c_strings and C++ string objects are not the same thing! If the character string
you wish to convert to a value is stored in a C++ string object, you first need to convert it to a c_string using
the string class method c_str:

double foo = atof(somestring.c_str())

Mystery-Box Challenge
Here is your next mystery-box challenge. What is the output produced by the following code segment?

bool mystery(string fstr)
{ string rstr;
 for(int i=fstr.length()-1; i>=0 ;i--)
 rstr += fstr[i];
 return rstr == fstr;
}

1

Warm-up

1) Pencil and Paper Exercises (or programming...)
Consider the following code fragment:

string str1; str2;
getline(cin,str1);

Using pencil/pen and paper, answer the following questions and show your results to one of the TAs:

a. Write a single-statement for loop that will output each character of str1 on a separate line as follows
(e.g.) :

H
e
l
l
o

b. Write a for loop to construct a string, str2 that is exactly the same as str1 but without the last charac-
ter. Use indexing and the length method only. Do not use any other functions:

c. Now write a single C++ statement that will accomplish the same thing as the previous problem using only
the length and substr methods (i.e., do not use indexing or loops):

d. Assuming that there is an equal sign (' = ') somewhere in str1, write the statement or statements that will
save all the characters to the left of the equal sign in str2: [Hint: use the find and substr methods]

e. If the input string didn't contain an equal sign, what value would the find method return?

f. Write the statement or statements that will find the first occurrence of a comma (' , ') in str1 and print ei-
ther "the comma is at index: n" (where n is the index of the comma), or "no comma found" if no comma is
found in the string:

Stretch

1) Returning Individual CSV Values
Write a function named nextString that will return a single 'value' (i.e. substring) from a Comma Sepa-
rated Value" string. Your function will take two arguments: a string variable containing a comma separated
list of values, and an integer containing the starting index; your function should return a single string object
with the value that starts at that index and ends right before the next comma ',' (do not include the comma in
the returned string!) :

string nextString(string str, int start_index);
If, however, the start index is after the last comma in the string, then the function should return the value start-
ing at that index and continuing to the end of the string.

2

For example,
cout << nextString("my,cat,ate,my,homework",3);

will print
cat

and
cout << nextString("my,cat,ate,my,homework",8);

will print
te

and
cout << nextString("my,cat,ate,my,homework",18);

will print
work

When you have written your function, then write a short test program that will take in a simple comma sepa-
rated string using getline:

 getline(cin,somestring)

and output values in the string using the nextString function.

2) Split
Now, extend your test program by adding a second function named split that will identify all the individual
values in a comma separated value string and return them in an array of string objects:

int split(string str, string a[], int max_size);

Your function will take three arguments: a comma separated value string str, an array a of string objects,
and the maximum size of the array. You must use the nextString function from Stretch Problem (1) to
obtain each value in the string and store it in the array starting, with the first element. Return the total number
of values stored in the array.

For example:

string varray[VALUES];
int cnt = split("my,cat,ate,my,homework",varray,VALUES);
for(int i=0; i<cnt; i++)
 cout << varray[i] << endl;

Should produce:

my
cat
ate
my
homework

3

Workout
1) Earthquake Data, Part 1
Large repositories of recorded measurement data are available on the World Wide Web from a wide spectrum
of applications such as stock market data, weather/climate data, etc.

Use your Web browser to view the following URL:
http://earthquake.usgs.gov/earthquakes/map/

This site is maintained by the US Geological Service and reports recent earthquake activity around the world.
If you examine the upper left corner of this web page, you will see a link marked 'download'. Select this link
and then choose 'CSV' as the file format. Now save the downloaded file in your home directory and then use
a text editor to examine it.

The file contains a large quantity of information that is detailed in the first line of the file. We will only be
interested in the magnitude of the earthquake and the place (the string indicating where the event occurred,
not the latitude/longitude). As you examine the file, note that the place is actually two comma separated
strings. The first begins with a double-quote and the second ends with another double quote. The "general"
location we are interested in is the second of the two strings that make up the place description.

First, write a program that will read the file and output the categories from the first line, along with their rela-
tive location in the line:

Example:
0 time
1 latitude
2 longitude
3 depth
4 mag
5 magType
6 nst
7 gap
8 dmin
9 rms
10 net
11 id
12 updated
13 place
14 type

You should use the getline() function to read the first line of the file and the split function from
Stretch 2 to create the value array.

2) Earthquake Data, Part 2
Now, modify your program to print out the magnitude and location of each earthquake in the file. Compare
your program results to the actual file data to verify that it works correctly.

Challenge
Here is an extra challenge problem. You should try to complete the warm-up, stretch and workout problems
in the lab. Try this challenge problem if you have extra time or would like additional practice outside of lab.

4

1). Earthquake Report
Modify the bubble-sort function from last week’s lab exercise to sort the rows of a two dimensional array in
descending order of the first element in each row. That is, as it sorts the first element in each row, it should
move entire rows so that each row of data stays as a row throughout the sort.

Next, read the earthquake data and store only the magnitude and location in a two dimensional array with n
rows and two columns.

Now sort the earthquake data in descending order of magnitude, and print out a list of all the earthquake mag-
nitudes and their associated locations in order from the highest to the lowest. Note you will need to store the
magnitude data as a string object in the array, but use its equivalent floating-point value for the comparison.
Can you describe why?

[Hint: you can use the atof() or stod() function in your sort comparison.]

5

